Capacitors Voltage Switching Ripple in Three-Phase Three-Level Neutral Point Clamped Inverters with Self-Balancing Carrier-Based Modulation

This paper provides a comprehensive analysis of the capacitors voltage switching ripple for three-phase three-level neutral point clamped (NPC) inverter topologies. The voltage ripple amplitudes of the two dc-link capacitors are theoretically estimated as a function of both amplitude and phase angle...

Full description

Bibliographic Details
Main Authors: Manel Hammami, Gabriele Rizzoli, Riccardo Mandrioli, Gabriele Grandi
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/11/12/3244
Description
Summary:This paper provides a comprehensive analysis of the capacitors voltage switching ripple for three-phase three-level neutral point clamped (NPC) inverter topologies. The voltage ripple amplitudes of the two dc-link capacitors are theoretically estimated as a function of both amplitude and phase angle of output current and the inverter modulation index. In particular, peak-to-peak distribution and maximum amplitudes of the capacitor voltage switching ripple over the fundamental period are obtained. A comparison is made considering different carrier-based pulse-width modulations in the case of almost all sinusoidal load currents, representing either grid connection or passive load with a negligible current ripple. Based on the voltage switching ripple requirements of capacitors, a simple and effective original equation for a preliminary sizing of the capacitors has been proposed. Numerical simulations and experimental tests have been carried out in order to verify the analytical developments.
ISSN:1996-1073