Cancer Risks Linked to the Bad Luck Hypothesis and Epigenomic Mutational Signatures

Exposure to pathogen infection, and occupational and environmental agents, contributes to induction of most types of cancer through different mechanisms. Cancer is defined and characterized by accumulation of mutations and epimutations that lead to changes in the cellular genome and epigenome. Accor...

Full description

Bibliographic Details
Main Author: José E. Belizário
Format: Article
Language:English
Published: MDPI AG 2018-07-01
Series:Epigenomes
Subjects:
Online Access:http://www.mdpi.com/2075-4655/2/3/13
Description
Summary:Exposure to pathogen infection, and occupational and environmental agents, contributes to induction of most types of cancer through different mechanisms. Cancer is defined and characterized by accumulation of mutations and epimutations that lead to changes in the cellular genome and epigenome. According to a recent Bad Luck Hypothesis, random error mutations during DNA replication in a small population of stem cells may be implicated in two-thirds of variation of cancer risk in 25 organs and tissues. What determines stem cell vulnerability and risk of malignancy across the spectrum of organs, such as the brain, bone marrow, skeletal muscles, skin, and liver? Have stem cells pooled in particular tissues or organs evolved some critical ability to deal with DNA damage in the presence of extrinsic environmental factors? This paper describes how the complex replication and repair DNA systems control mutational events. In addition, recent advances on cancer epigenomic signatures and epigenetic mechanisms are discussed, which will guide future investigation of the origin of cancer initiating cells in tissue and organs in a clinical setting.
ISSN:2075-4655