Thermal-Insulation Effect and Evaluation Indices of Asphalt Mixture Mixed with Phase-Change Materials

Under strong winds and at low temperatures, heat loss of hot-mix asphalt mixtures is likely to occur, which leads to temperature segregation. Temperature segregation affects the forming quality and the performance of asphalt pavements. In this study, a phase-change thermal-insulation agent (PCTIA) w...

Full description

Bibliographic Details
Main Authors: Biao Ma, Heting Shi, Jiayun Xu, Kun Wei, Xiaoqing Wang, Yue Xiao
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/17/3738
Description
Summary:Under strong winds and at low temperatures, heat loss of hot-mix asphalt mixtures is likely to occur, which leads to temperature segregation. Temperature segregation affects the forming quality and the performance of asphalt pavements. In this study, a phase-change thermal-insulation agent (PCTIA) was prepared for reducing the temperature dissipation. A cooling simulation experiment was performed to test the temperature-dissipation process for an ordinary asphalt mixture and the asphalt mixture mixed with PCTIA (AM-PCTIA). The thermal-insulation effect was analyzed according to the temperature difference and the thermal-insulation extension time. Moreover, two indices—the thermal-insulation accumulated time difference value (IATDV) and thermal-insulation accumulated time difference index (IATDI)—were proposed for evaluating the thermal-insulation ability and efficiency. The results indicated that the temperature at the center of the AM-PATIA was 4 °C higher than that for the ordinary asphalt mixture. The insulation time was prolonged by 29.8 min at the ambient temperature of 15 °C. As the ambient temperature increased, the thermal-insulation effect of the PCTIA improved.
ISSN:1996-1944