How to Predict Energy Consumption in BRICS Countries?

Brazil, Russia, China, India, and the Republic of South Africa (BRICS) represent developing economies facing different energy and economic development challenges. The current study aims to predict energy consumption in BRICS at aggregate and disaggregate levels using the annual time series data set...

Full description

Bibliographic Details
Main Authors: Atif Maqbool Khan, Magdalena Osińska
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/10/2749
_version_ 1827692840818311168
author Atif Maqbool Khan
Magdalena Osińska
author_facet Atif Maqbool Khan
Magdalena Osińska
author_sort Atif Maqbool Khan
collection DOAJ
description Brazil, Russia, China, India, and the Republic of South Africa (BRICS) represent developing economies facing different energy and economic development challenges. The current study aims to predict energy consumption in BRICS at aggregate and disaggregate levels using the annual time series data set from 1992 to 2019 and to compare results obtained from a set of models. The time-series data are from the British Petroleum (BP-2019) Statistical Review of World Energy. The forecasting methodology bases on a novel Fractional-order Grey Model (<i>FGM</i>) with different order parameters. This study contributes to the literature by comparing the forecasting accuracy and the predictive ability of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mi>G</mi><mi>M</mi><mfenced><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></semantics></math></inline-formula> with traditional ones, like standard <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>M</mi><mfenced><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>R</mi><mi>I</mi><mi>M</mi><mi>A</mi><mfenced><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></semantics></math></inline-formula> models. Moreover, it illustrates the view of BRICS’s nexus of energy consumption at aggregate and disaggregates levels using the latest available data set, which will provide a reliable and broader perspective. The Diebold-Mariano test results confirmed the equal predictive ability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mi>G</mi><mi>M</mi><mfenced><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></semantics></math></inline-formula> for a specific range of order parameters and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>R</mi><mi>I</mi><mi>M</mi><mi>A</mi><mfenced><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></semantics></math></inline-formula> model and the usefulness of both approaches for energy consumption efficient forecasting.
first_indexed 2024-03-10T11:31:33Z
format Article
id doaj.art-4a7260c31eff4a10a01574fb407ee57e
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-10T11:31:33Z
publishDate 2021-05-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-4a7260c31eff4a10a01574fb407ee57e2023-11-21T19:11:50ZengMDPI AGEnergies1996-10732021-05-011410274910.3390/en14102749How to Predict Energy Consumption in BRICS Countries?Atif Maqbool Khan0Magdalena Osińska1Department of Economics, University Centre of Excellence, Interacting Minds, Societies, Environments, Nicolaus Copernicus University, 87-100 Toruń, PolandDepartment of Economics, Nicolaus Copernicus University, 87-100 Toruń, PolandBrazil, Russia, China, India, and the Republic of South Africa (BRICS) represent developing economies facing different energy and economic development challenges. The current study aims to predict energy consumption in BRICS at aggregate and disaggregate levels using the annual time series data set from 1992 to 2019 and to compare results obtained from a set of models. The time-series data are from the British Petroleum (BP-2019) Statistical Review of World Energy. The forecasting methodology bases on a novel Fractional-order Grey Model (<i>FGM</i>) with different order parameters. This study contributes to the literature by comparing the forecasting accuracy and the predictive ability of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mi>G</mi><mi>M</mi><mfenced><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></semantics></math></inline-formula> with traditional ones, like standard <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>M</mi><mfenced><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>R</mi><mi>I</mi><mi>M</mi><mi>A</mi><mfenced><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></semantics></math></inline-formula> models. Moreover, it illustrates the view of BRICS’s nexus of energy consumption at aggregate and disaggregates levels using the latest available data set, which will provide a reliable and broader perspective. The Diebold-Mariano test results confirmed the equal predictive ability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mi>G</mi><mi>M</mi><mfenced><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></semantics></math></inline-formula> for a specific range of order parameters and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>R</mi><mi>I</mi><mi>M</mi><mi>A</mi><mfenced><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></semantics></math></inline-formula> model and the usefulness of both approaches for energy consumption efficient forecasting.https://www.mdpi.com/1996-1073/14/10/2749energy consumptionBRICSGM (1, 1), fractional-orderGREYforecasting accuracy
spellingShingle Atif Maqbool Khan
Magdalena Osińska
How to Predict Energy Consumption in BRICS Countries?
Energies
energy consumption
BRICS
GM (1, 1), fractional-order
GREY
forecasting accuracy
title How to Predict Energy Consumption in BRICS Countries?
title_full How to Predict Energy Consumption in BRICS Countries?
title_fullStr How to Predict Energy Consumption in BRICS Countries?
title_full_unstemmed How to Predict Energy Consumption in BRICS Countries?
title_short How to Predict Energy Consumption in BRICS Countries?
title_sort how to predict energy consumption in brics countries
topic energy consumption
BRICS
GM (1, 1), fractional-order
GREY
forecasting accuracy
url https://www.mdpi.com/1996-1073/14/10/2749
work_keys_str_mv AT atifmaqboolkhan howtopredictenergyconsumptioninbricscountries
AT magdalenaosinska howtopredictenergyconsumptioninbricscountries