Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulations

The response of the global climate-carbon cycle system to an extremely large Northern Hemisphere mid-latitude volcanic eruption is investigated using ensemble integrations with the comprehensive Earth System Model MPI-ESM. The model includes dynamical compartments of the atmosphere and ocean and int...

Full description

Bibliographic Details
Main Authors: J. Segschneider, A. Beitsch, C. Timmreck, V. Brovkin, T. Ilyina, J. Jungclaus, S. J. Lorenz, K. D. Six, D. Zanchettin
Format: Article
Language:English
Published: Copernicus Publications 2013-02-01
Series:Biogeosciences
Online Access:http://www.biogeosciences.net/10/669/2013/bg-10-669-2013.pdf
_version_ 1811263752703574016
author J. Segschneider
A. Beitsch
C. Timmreck
V. Brovkin
T. Ilyina
J. Jungclaus
S. J. Lorenz
K. D. Six
D. Zanchettin
author_facet J. Segschneider
A. Beitsch
C. Timmreck
V. Brovkin
T. Ilyina
J. Jungclaus
S. J. Lorenz
K. D. Six
D. Zanchettin
author_sort J. Segschneider
collection DOAJ
description The response of the global climate-carbon cycle system to an extremely large Northern Hemisphere mid-latitude volcanic eruption is investigated using ensemble integrations with the comprehensive Earth System Model MPI-ESM. The model includes dynamical compartments of the atmosphere and ocean and interactive modules of the terrestrial biosphere as well as ocean biogeochemistry. The MPI-ESM was forced with anomalies of aerosol optical depth and effective radius of aerosol particles corresponding to a super eruption of the Yellowstone volcanic system. The model experiment consists of an ensemble of fifteen model integrations that are started at different pre-ENSO states of a control experiment and run for 200 years after the volcanic eruption. The climate response to the volcanic eruption is a maximum global monthly mean surface air temperature cooling of 3.8 K for the ensemble mean and from 3.3 K to 4.3 K for individual ensemble members. Atmospheric <i>p</i>CO<sub>2</sub> decreases by a maximum of 5 ppm for the ensemble mean and by 3 ppm to 7 ppm for individual ensemble members approximately 6 years after the eruption. The atmospheric carbon content only very slowly returns to near pre-eruption level at year 200 after the eruption. The ocean takes up carbon shortly after the eruption in response to the cooling, changed wind fields and ice cover. This physics-driven uptake is weakly counteracted by a reduction of the biological export production mainly in the tropical Pacific. The land vegetation pool shows a decrease by 4 GtC due to reduced short-wave radiation that has not been present in a smaller scale eruption. The gain of the soil carbon pool determines the amplitude of the CO<sub>2</sub> perturbation and the long-term behaviour of the overall system: an initial gain caused by reduced soil respiration is followed by a rather slow return towards pre-eruption levels. During this phase, the ocean compensates partly for the reduced atmospheric carbon content in response to the land's gain. In summary, we find that the volcanic eruption has long-lasting effects on the carbon cycle: After 200 years, the ocean and the land carbon pools are still different from the pre-eruption state by 3 GtC and 4 GtC, respectively, and the land carbon pools (vegetation and soil) show some long-lasting local anomalies that are only partly visible in the global signal.
first_indexed 2024-04-12T19:50:53Z
format Article
id doaj.art-4a7cbc6370394179b66ab3f8f2b1c114
institution Directory Open Access Journal
issn 1726-4170
1726-4189
language English
last_indexed 2024-04-12T19:50:53Z
publishDate 2013-02-01
publisher Copernicus Publications
record_format Article
series Biogeosciences
spelling doaj.art-4a7cbc6370394179b66ab3f8f2b1c1142022-12-22T03:18:50ZengCopernicus PublicationsBiogeosciences1726-41701726-41892013-02-0110266968710.5194/bg-10-669-2013Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulationsJ. SegschneiderA. BeitschC. TimmreckV. BrovkinT. IlyinaJ. JungclausS. J. LorenzK. D. SixD. ZanchettinThe response of the global climate-carbon cycle system to an extremely large Northern Hemisphere mid-latitude volcanic eruption is investigated using ensemble integrations with the comprehensive Earth System Model MPI-ESM. The model includes dynamical compartments of the atmosphere and ocean and interactive modules of the terrestrial biosphere as well as ocean biogeochemistry. The MPI-ESM was forced with anomalies of aerosol optical depth and effective radius of aerosol particles corresponding to a super eruption of the Yellowstone volcanic system. The model experiment consists of an ensemble of fifteen model integrations that are started at different pre-ENSO states of a control experiment and run for 200 years after the volcanic eruption. The climate response to the volcanic eruption is a maximum global monthly mean surface air temperature cooling of 3.8 K for the ensemble mean and from 3.3 K to 4.3 K for individual ensemble members. Atmospheric <i>p</i>CO<sub>2</sub> decreases by a maximum of 5 ppm for the ensemble mean and by 3 ppm to 7 ppm for individual ensemble members approximately 6 years after the eruption. The atmospheric carbon content only very slowly returns to near pre-eruption level at year 200 after the eruption. The ocean takes up carbon shortly after the eruption in response to the cooling, changed wind fields and ice cover. This physics-driven uptake is weakly counteracted by a reduction of the biological export production mainly in the tropical Pacific. The land vegetation pool shows a decrease by 4 GtC due to reduced short-wave radiation that has not been present in a smaller scale eruption. The gain of the soil carbon pool determines the amplitude of the CO<sub>2</sub> perturbation and the long-term behaviour of the overall system: an initial gain caused by reduced soil respiration is followed by a rather slow return towards pre-eruption levels. During this phase, the ocean compensates partly for the reduced atmospheric carbon content in response to the land's gain. In summary, we find that the volcanic eruption has long-lasting effects on the carbon cycle: After 200 years, the ocean and the land carbon pools are still different from the pre-eruption state by 3 GtC and 4 GtC, respectively, and the land carbon pools (vegetation and soil) show some long-lasting local anomalies that are only partly visible in the global signal.http://www.biogeosciences.net/10/669/2013/bg-10-669-2013.pdf
spellingShingle J. Segschneider
A. Beitsch
C. Timmreck
V. Brovkin
T. Ilyina
J. Jungclaus
S. J. Lorenz
K. D. Six
D. Zanchettin
Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulations
Biogeosciences
title Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulations
title_full Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulations
title_fullStr Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulations
title_full_unstemmed Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulations
title_short Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulations
title_sort impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble earth system model simulations
url http://www.biogeosciences.net/10/669/2013/bg-10-669-2013.pdf
work_keys_str_mv AT jsegschneider impactofanextremelylargemagnitudevolcaniceruptionontheglobalclimateandcarboncycleestimatedfromensembleearthsystemmodelsimulations
AT abeitsch impactofanextremelylargemagnitudevolcaniceruptionontheglobalclimateandcarboncycleestimatedfromensembleearthsystemmodelsimulations
AT ctimmreck impactofanextremelylargemagnitudevolcaniceruptionontheglobalclimateandcarboncycleestimatedfromensembleearthsystemmodelsimulations
AT vbrovkin impactofanextremelylargemagnitudevolcaniceruptionontheglobalclimateandcarboncycleestimatedfromensembleearthsystemmodelsimulations
AT tilyina impactofanextremelylargemagnitudevolcaniceruptionontheglobalclimateandcarboncycleestimatedfromensembleearthsystemmodelsimulations
AT jjungclaus impactofanextremelylargemagnitudevolcaniceruptionontheglobalclimateandcarboncycleestimatedfromensembleearthsystemmodelsimulations
AT sjlorenz impactofanextremelylargemagnitudevolcaniceruptionontheglobalclimateandcarboncycleestimatedfromensembleearthsystemmodelsimulations
AT kdsix impactofanextremelylargemagnitudevolcaniceruptionontheglobalclimateandcarboncycleestimatedfromensembleearthsystemmodelsimulations
AT dzanchettin impactofanextremelylargemagnitudevolcaniceruptionontheglobalclimateandcarboncycleestimatedfromensembleearthsystemmodelsimulations