Effects of Concentration and Type of Lipids on the Droplet Size, Encapsulation, Colour and Viscosity in the Oil-in-Water Emulsions Stabilised by Rapeseed Protein

The objective of this study was to extract the rapeseed protein from by-products and further examine the effect of lab-made rapeseed protein on the droplet size, microstructure, colour, encapsulation and apparent viscosity of emulsions. Rapeseed protein-stabilised emulsions with an increasing gradie...

Full description

Bibliographic Details
Main Authors: Mirosław M. Kasprzak, Maciej Jarzębski, Wojciech Smułek, Wiktor Berski, Marzena Zając, Karolina Östbring, Cecilia Ahlström, Stanisław Ptasznik, Jacek Domagała
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/12/12/2288
Description
Summary:The objective of this study was to extract the rapeseed protein from by-products and further examine the effect of lab-made rapeseed protein on the droplet size, microstructure, colour, encapsulation and apparent viscosity of emulsions. Rapeseed protein-stabilised emulsions with an increasing gradient of milk fat or rapeseed oil (10, 20, 30, 40 and 50%, <i>v</i>/<i>v</i>) were fabricated using a high shear rate homogenisation. All emulsions showed 100% oil encapsulation for 30 days of storage, irrespective of lipid type and the concentration used. Rapeseed oil emulsions were stable against coalescence, whereas the milk fat emulsion showed a partial micro-coalescence. The apparent viscosity of emulsions raised with increased lipid concentrations. Each of the emulsions showed a shear thinning behaviour, a typical behaviour of non-Newtonian fluids. The average droplet size was raised in milk fat and rapeseed oil emulsions when the concentration of lipids increased. A simple approach to manufacturing stable emulsions offers a feasible hint to convert protein-rich by-products into a valuable carrier of saturated or unsaturated lipids for the design of foods with a targeted lipid profile.
ISSN:2304-8158