The <i>Zahl-Anzahl</i> Distinction in Gottlob Frege: Arithmetic of Natural Numbers with <i>Anzahl</i> as a Primitive Term

The starting point is Peano&#8217;s expression of the axiomatics of natural numbers in the framework of Leśniewski&#8217;s elementary ontology. The author enriches elementary ontology with the so-called Frege&#8217;s predication scheme and goes on to propose the formulations of this axio...

Full description

Bibliographic Details
Main Author: Eugeniusz Wojciechowski
Format: Article
Language:English
Published: MDPI AG 2019-12-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/9/1/6
_version_ 1819112322763849728
author Eugeniusz Wojciechowski
author_facet Eugeniusz Wojciechowski
author_sort Eugeniusz Wojciechowski
collection DOAJ
description The starting point is Peano&#8217;s expression of the axiomatics of natural numbers in the framework of Leśniewski&#8217;s elementary ontology. The author enriches elementary ontology with the so-called Frege&#8217;s predication scheme and goes on to propose the formulations of this axiomatic, in which the original natural number (<i>N</i>) term is replaced by the term <i>Anzahl</i> (<i>A</i>). The functor of the successor (<i>S</i>) is defined in it.
first_indexed 2024-12-22T04:11:40Z
format Article
id doaj.art-4a83774b16a04e00bb4a659cb1b36b31
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-12-22T04:11:40Z
publishDate 2019-12-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-4a83774b16a04e00bb4a659cb1b36b312022-12-21T18:39:30ZengMDPI AGAxioms2075-16802019-12-0191610.3390/axioms9010006axioms9010006The <i>Zahl-Anzahl</i> Distinction in Gottlob Frege: Arithmetic of Natural Numbers with <i>Anzahl</i> as a Primitive TermEugeniusz Wojciechowski0Division of Philosophy of Nature, Hugo Kołłątaj Agriculture University of Cracow, 29 Listopada 46, 31-425 Cracow, PolandThe starting point is Peano&#8217;s expression of the axiomatics of natural numbers in the framework of Leśniewski&#8217;s elementary ontology. The author enriches elementary ontology with the so-called Frege&#8217;s predication scheme and goes on to propose the formulations of this axiomatic, in which the original natural number (<i>N</i>) term is replaced by the term <i>Anzahl</i> (<i>A</i>). The functor of the successor (<i>S</i>) is defined in it.https://www.mdpi.com/2075-1680/9/1/6peano’s axiomatics of natural numbersleśniewski’s elementary ontologyfrege’s predication schemefrege’s <i>zahl-anzahl</i> distinction
spellingShingle Eugeniusz Wojciechowski
The <i>Zahl-Anzahl</i> Distinction in Gottlob Frege: Arithmetic of Natural Numbers with <i>Anzahl</i> as a Primitive Term
Axioms
peano’s axiomatics of natural numbers
leśniewski’s elementary ontology
frege’s predication scheme
frege’s <i>zahl-anzahl</i> distinction
title The <i>Zahl-Anzahl</i> Distinction in Gottlob Frege: Arithmetic of Natural Numbers with <i>Anzahl</i> as a Primitive Term
title_full The <i>Zahl-Anzahl</i> Distinction in Gottlob Frege: Arithmetic of Natural Numbers with <i>Anzahl</i> as a Primitive Term
title_fullStr The <i>Zahl-Anzahl</i> Distinction in Gottlob Frege: Arithmetic of Natural Numbers with <i>Anzahl</i> as a Primitive Term
title_full_unstemmed The <i>Zahl-Anzahl</i> Distinction in Gottlob Frege: Arithmetic of Natural Numbers with <i>Anzahl</i> as a Primitive Term
title_short The <i>Zahl-Anzahl</i> Distinction in Gottlob Frege: Arithmetic of Natural Numbers with <i>Anzahl</i> as a Primitive Term
title_sort i zahl anzahl i distinction in gottlob frege arithmetic of natural numbers with i anzahl i as a primitive term
topic peano’s axiomatics of natural numbers
leśniewski’s elementary ontology
frege’s predication scheme
frege’s <i>zahl-anzahl</i> distinction
url https://www.mdpi.com/2075-1680/9/1/6
work_keys_str_mv AT eugeniuszwojciechowski theizahlanzahlidistinctioningottlobfregearithmeticofnaturalnumberswithianzahliasaprimitiveterm
AT eugeniuszwojciechowski izahlanzahlidistinctioningottlobfregearithmeticofnaturalnumberswithianzahliasaprimitiveterm