Synergistic Regulation Mechanism of Inorganic Thermal Oxidation Coating and Poly (Vinylphosphonic Acid) (PVPA) Coating for High Load Bearing Superlubricity

A low friction coefficient and high bearing capacity can improve the service life of implants in the human body. In this study, we firstly investigate the mechanical properties of inorganic thermal oxide coatings on titanium alloy (Ti6Al4V). Tribological experiments were performed for different trib...

Full description

Bibliographic Details
Main Authors: Mengmeng Liu, Zhifeng Liu, Junmin Chen, Liang Jiang, Caixia Zhang, Xianyong Li
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/1/416
Description
Summary:A low friction coefficient and high bearing capacity can improve the service life of implants in the human body. In this study, we firstly investigate the mechanical properties of inorganic thermal oxide coatings on titanium alloy (Ti6Al4V). Tribological experiments were performed for different tribo-pairs under uniform conditions. The inorganic thermal oxide coating on Ti6Al4V formed at 300℃ was found to have excellent tribological properties and can effectively improve the bearing capacity of Ti6Al4V. The organic poly (vinylphosphonic acid) (PVPA) on Ti6Al4V has excellent anti-friction properties, which can help achieve superlubricity. An inorganic thermal oxide/organic PVPA composite coating was fabricated on Ti6Al4V to obtain a surface with low friction and high bearing capacity. It is found that the presence of the thermal oxide doubled the bearing capacity of the composite coating compared to that of the PVPA coating alone. This study can serve as a guide for the modification of artificial joints.
ISSN:2076-3417