On Weighted (<i>k</i>, <i>s</i>)-Riemann-Liouville Fractional Operators and Solution of Fractional Kinetic Equation

In this article, we establish the weighted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>s</mi><mo>)</mo><...

Full description

Bibliographic Details
Main Authors: Muhammad Samraiz, Muhammad Umer, Artion Kashuri, Thabet Abdeljawad, Sajid Iqbal, Nabil Mlaiki
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/5/3/118
Description
Summary:In this article, we establish the weighted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow></semantics></math></inline-formula>-Riemann-Liouville fractional integral and differential operators. Some certain properties of the operators and the weighted generalized Laplace transform of the new operators are part of the paper. The article consists of Chebyshev-type inequalities involving a weighted fractional integral. We propose an integro-differential kinetic equation using the novel fractional operators and find its solution by applying weighted generalized Laplace transforms.
ISSN:2504-3110