Symmetry Detection and Topological Synthesis of Mechanisms of Powertrains

The function of vehicle powertrains (including hybrid powertrains) is to transmit power from the power source (engine or electric machine) to driving wheels. The planetary gear train (PGT) is a core structure of mechanisms of powertrains. The detection of topological symmetry is helpful for improvin...

Full description

Bibliographic Details
Main Authors: Wenjian Yang, Changping Li
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/13/4755
Description
Summary:The function of vehicle powertrains (including hybrid powertrains) is to transmit power from the power source (engine or electric machine) to driving wheels. The planetary gear train (PGT) is a core structure of mechanisms of powertrains. The detection of topological symmetry is helpful for improving the efficiency of mechanism design. In this paper, we present a fully automatic and reliable method for detecting symmetry of plane kinematic chains and extend this method to symmetry detection and the topological design of mechanisms of powertrains. First, the topological model and adjacency matrix are introduced to represent various kinds of plane kinematic chains. Then, the moment matrix of the kinematic chain is established to obtain link groups, based on which we propose an algorithm to generate the unique numerical code of each link and precisely detect the symmetry. Our method is applied to synthesize different kinds of plane kinematic chains and mechanisms, which can improve the design efficiency of mechanisms of powertrains and other mechanical devices.
ISSN:1996-1073