Holographic Brain Theory: Super-Radiance, Memory Capacity and Control Theory

We investigate Quantum Electrodynamics corresponding to the holographic brain theory introduced by Pribram to describe memory in the human brain. First, we derive a super-radiance solution in Quantum Electrodynamics with non-relativistic charged bosons (a model of molecular conformational states of...

Full description

Bibliographic Details
Main Authors: Akihiro Nishiyama, Shigenori Tanaka, Jack A. Tuszynski, Roumiana Tsenkova
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/25/4/2399
Description
Summary:We investigate Quantum Electrodynamics corresponding to the holographic brain theory introduced by Pribram to describe memory in the human brain. First, we derive a super-radiance solution in Quantum Electrodynamics with non-relativistic charged bosons (a model of molecular conformational states of water) for coherent light sources of holograms. Next, we estimate memory capacity of a brain neocortex, and adopt binary holograms to manipulate optical information. Finally, we introduce a control theory to manipulate holograms involving biological water’s molecular conformational states. We show how a desired waveform in holography is achieved in a hierarchical model using numerical simulations.
ISSN:1661-6596
1422-0067