Hamilton’s gradient estimate for fast diffusion equations under geometric flow
Suppose that <em>M</em> is a complete noncompact Riemannian manifold of dimension <em>n</em>. In the present paper, we obtain a Hamilton's gradient estimate for positive solutions of the fast diffusion equations\[ \dfrac{\partial u}{\partial t}=\Delta u^m ,\qquad 1-\dfra...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2019-05-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/10.3934/math.2019.3.497/fulltext.html |
_version_ | 1811214259834585088 |
---|---|
author | Ghodratallah Fasihi-Ramandi |
author_facet | Ghodratallah Fasihi-Ramandi |
author_sort | Ghodratallah Fasihi-Ramandi |
collection | DOAJ |
description | Suppose that <em>M</em> is a complete noncompact Riemannian manifold of dimension <em>n</em>. In the present paper, we obtain a Hamilton's gradient estimate for positive solutions of the fast diffusion equations\[ \dfrac{\partial u}{\partial t}=\Delta u^m ,\qquad 1-\dfrac{4}{n+8}<m<1\]on $M\times (-\infty ,0]$ under the geometric flow. |
first_indexed | 2024-04-12T06:00:14Z |
format | Article |
id | doaj.art-4af90454d4ad425ebf052d751c1359e8 |
institution | Directory Open Access Journal |
issn | 2473-6988 |
language | English |
last_indexed | 2024-04-12T06:00:14Z |
publishDate | 2019-05-01 |
publisher | AIMS Press |
record_format | Article |
series | AIMS Mathematics |
spelling | doaj.art-4af90454d4ad425ebf052d751c1359e82022-12-22T03:45:03ZengAIMS PressAIMS Mathematics2473-69882019-05-014349750510.3934/math.2019.3.497Hamilton’s gradient estimate for fast diffusion equations under geometric flowGhodratallah Fasihi-Ramandi0Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, IranSuppose that <em>M</em> is a complete noncompact Riemannian manifold of dimension <em>n</em>. In the present paper, we obtain a Hamilton's gradient estimate for positive solutions of the fast diffusion equations\[ \dfrac{\partial u}{\partial t}=\Delta u^m ,\qquad 1-\dfrac{4}{n+8}<m<1\]on $M\times (-\infty ,0]$ under the geometric flow.https://www.aimspress.com/article/10.3934/math.2019.3.497/fulltext.htmlfast diffusion equationRicci flowHamilton inequalitygradient estimates |
spellingShingle | Ghodratallah Fasihi-Ramandi Hamilton’s gradient estimate for fast diffusion equations under geometric flow AIMS Mathematics fast diffusion equation Ricci flow Hamilton inequality gradient estimates |
title | Hamilton’s gradient estimate for fast diffusion equations under geometric flow |
title_full | Hamilton’s gradient estimate for fast diffusion equations under geometric flow |
title_fullStr | Hamilton’s gradient estimate for fast diffusion equations under geometric flow |
title_full_unstemmed | Hamilton’s gradient estimate for fast diffusion equations under geometric flow |
title_short | Hamilton’s gradient estimate for fast diffusion equations under geometric flow |
title_sort | hamilton s gradient estimate for fast diffusion equations under geometric flow |
topic | fast diffusion equation Ricci flow Hamilton inequality gradient estimates |
url | https://www.aimspress.com/article/10.3934/math.2019.3.497/fulltext.html |
work_keys_str_mv | AT ghodratallahfasihiramandi hamiltonsgradientestimateforfastdiffusionequationsundergeometricflow |