Hamilton’s gradient estimate for fast diffusion equations under geometric flow

Suppose that <em>M</em> is a complete noncompact Riemannian manifold of dimension <em>n</em>. In the present paper, we obtain a Hamilton's gradient estimate for positive solutions of the fast diffusion equations\[ \dfrac{\partial u}{\partial t}=\Delta u^m ,\qquad 1-\dfra...

Full description

Bibliographic Details
Main Author: Ghodratallah Fasihi-Ramandi
Format: Article
Language:English
Published: AIMS Press 2019-05-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2019.3.497/fulltext.html
_version_ 1811214259834585088
author Ghodratallah Fasihi-Ramandi
author_facet Ghodratallah Fasihi-Ramandi
author_sort Ghodratallah Fasihi-Ramandi
collection DOAJ
description Suppose that <em>M</em> is a complete noncompact Riemannian manifold of dimension <em>n</em>. In the present paper, we obtain a Hamilton's gradient estimate for positive solutions of the fast diffusion equations\[ \dfrac{\partial u}{\partial t}=\Delta u^m ,\qquad 1-\dfrac{4}{n+8}&lt;m&lt;1\]on $M\times (-\infty ,0]$ under the geometric flow.
first_indexed 2024-04-12T06:00:14Z
format Article
id doaj.art-4af90454d4ad425ebf052d751c1359e8
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-12T06:00:14Z
publishDate 2019-05-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-4af90454d4ad425ebf052d751c1359e82022-12-22T03:45:03ZengAIMS PressAIMS Mathematics2473-69882019-05-014349750510.3934/math.2019.3.497Hamilton’s gradient estimate for fast diffusion equations under geometric flowGhodratallah Fasihi-Ramandi0Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, IranSuppose that <em>M</em> is a complete noncompact Riemannian manifold of dimension <em>n</em>. In the present paper, we obtain a Hamilton's gradient estimate for positive solutions of the fast diffusion equations\[ \dfrac{\partial u}{\partial t}=\Delta u^m ,\qquad 1-\dfrac{4}{n+8}&lt;m&lt;1\]on $M\times (-\infty ,0]$ under the geometric flow.https://www.aimspress.com/article/10.3934/math.2019.3.497/fulltext.htmlfast diffusion equationRicci flowHamilton inequalitygradient estimates
spellingShingle Ghodratallah Fasihi-Ramandi
Hamilton’s gradient estimate for fast diffusion equations under geometric flow
AIMS Mathematics
fast diffusion equation
Ricci flow
Hamilton inequality
gradient estimates
title Hamilton’s gradient estimate for fast diffusion equations under geometric flow
title_full Hamilton’s gradient estimate for fast diffusion equations under geometric flow
title_fullStr Hamilton’s gradient estimate for fast diffusion equations under geometric flow
title_full_unstemmed Hamilton’s gradient estimate for fast diffusion equations under geometric flow
title_short Hamilton’s gradient estimate for fast diffusion equations under geometric flow
title_sort hamilton s gradient estimate for fast diffusion equations under geometric flow
topic fast diffusion equation
Ricci flow
Hamilton inequality
gradient estimates
url https://www.aimspress.com/article/10.3934/math.2019.3.497/fulltext.html
work_keys_str_mv AT ghodratallahfasihiramandi hamiltonsgradientestimateforfastdiffusionequationsundergeometricflow