Alternative mechanisms for tn5 transposition.
Bacterial transposons are known to move to new genomic sites using either a replicative or a conservative mechanism. The behavior of transposon Tn5 is anomalous. In vitro studies indicate that it uses a conservative mechanism while in vivo results point to a replicative mechanism. To explain this an...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2009-08-01
|
Series: | PLoS Genetics |
Online Access: | http://europepmc.org/articles/PMC2723962?pdf=render |
Summary: | Bacterial transposons are known to move to new genomic sites using either a replicative or a conservative mechanism. The behavior of transposon Tn5 is anomalous. In vitro studies indicate that it uses a conservative mechanism while in vivo results point to a replicative mechanism. To explain this anomaly, a model is presented in which the two mechanisms are not independent--as widely believed--but could represent alternate outcomes of a common transpositional pathway. |
---|---|
ISSN: | 1553-7390 1553-7404 |