The ER folding sensor UGGT1 acts on TAPBPR-chaperoned peptide-free MHC I

Adaptive immune responses are triggered by antigenic peptides presented on major histocompatibility complex class I (MHC I) at the surface of pathogen-infected or cancerous cells. Formation of stable peptide-MHC I complexes is facilitated by tapasin and TAPBPR, two related MHC I-specific chaperones...

Full description

Bibliographic Details
Main Authors: Lina Sagert, Christian Winter, Ina Ruppert, Maximilian Zehetmaier, Christoph Thomas, Robert Tampé
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2023-06-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/85432
_version_ 1797785719592189952
author Lina Sagert
Christian Winter
Ina Ruppert
Maximilian Zehetmaier
Christoph Thomas
Robert Tampé
author_facet Lina Sagert
Christian Winter
Ina Ruppert
Maximilian Zehetmaier
Christoph Thomas
Robert Tampé
author_sort Lina Sagert
collection DOAJ
description Adaptive immune responses are triggered by antigenic peptides presented on major histocompatibility complex class I (MHC I) at the surface of pathogen-infected or cancerous cells. Formation of stable peptide-MHC I complexes is facilitated by tapasin and TAPBPR, two related MHC I-specific chaperones that catalyze selective loading of suitable peptides onto MHC I in a process called peptide editing or proofreading. On their journey to the cell surface, MHC I complexes must pass a quality control step performed by UGGT1, which senses the folding status of the transiting N-linked glycoproteins in the endoplasmic reticulum (ER). UGGT1 reglucosylates non-native glycoproteins and thereby allows them to revisit the ER folding machinery. Here, we describe a reconstituted in-vitro system of purified human proteins that enabled us to delineate the function of TAPBPR during the UGGT1-catalyzed quality control and reglucosylation of MHC I. By combining glycoengineering with liquid chromatography-mass spectrometry, we show that TAPBPR promotes reglucosylation of peptide-free MHC I by UGGT1. Thus, UGGT1 cooperates with TAPBPR in fulfilling a crucial function in the quality control mechanisms of antigen processing and presentation.
first_indexed 2024-03-13T00:57:59Z
format Article
id doaj.art-4afe7db9f697492296b426c4fb3a9539
institution Directory Open Access Journal
issn 2050-084X
language English
last_indexed 2024-03-13T00:57:59Z
publishDate 2023-06-01
publisher eLife Sciences Publications Ltd
record_format Article
series eLife
spelling doaj.art-4afe7db9f697492296b426c4fb3a95392023-07-06T14:40:09ZengeLife Sciences Publications LtdeLife2050-084X2023-06-011210.7554/eLife.85432The ER folding sensor UGGT1 acts on TAPBPR-chaperoned peptide-free MHC ILina Sagert0Christian Winter1Ina Ruppert2https://orcid.org/0000-0002-0448-2815Maximilian Zehetmaier3Christoph Thomas4https://orcid.org/0000-0001-7441-1089Robert Tampé5https://orcid.org/0000-0002-0403-2160Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, GermanyInstitute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, GermanyInstitute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, GermanyInstitute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, GermanyInstitute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, GermanyInstitute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main, GermanyAdaptive immune responses are triggered by antigenic peptides presented on major histocompatibility complex class I (MHC I) at the surface of pathogen-infected or cancerous cells. Formation of stable peptide-MHC I complexes is facilitated by tapasin and TAPBPR, two related MHC I-specific chaperones that catalyze selective loading of suitable peptides onto MHC I in a process called peptide editing or proofreading. On their journey to the cell surface, MHC I complexes must pass a quality control step performed by UGGT1, which senses the folding status of the transiting N-linked glycoproteins in the endoplasmic reticulum (ER). UGGT1 reglucosylates non-native glycoproteins and thereby allows them to revisit the ER folding machinery. Here, we describe a reconstituted in-vitro system of purified human proteins that enabled us to delineate the function of TAPBPR during the UGGT1-catalyzed quality control and reglucosylation of MHC I. By combining glycoengineering with liquid chromatography-mass spectrometry, we show that TAPBPR promotes reglucosylation of peptide-free MHC I by UGGT1. Thus, UGGT1 cooperates with TAPBPR in fulfilling a crucial function in the quality control mechanisms of antigen processing and presentation.https://elifesciences.org/articles/85432antigen processingER quality controlMHC I chaperonesglycoproteinsadaptive immunitypeptide editing
spellingShingle Lina Sagert
Christian Winter
Ina Ruppert
Maximilian Zehetmaier
Christoph Thomas
Robert Tampé
The ER folding sensor UGGT1 acts on TAPBPR-chaperoned peptide-free MHC I
eLife
antigen processing
ER quality control
MHC I chaperones
glycoproteins
adaptive immunity
peptide editing
title The ER folding sensor UGGT1 acts on TAPBPR-chaperoned peptide-free MHC I
title_full The ER folding sensor UGGT1 acts on TAPBPR-chaperoned peptide-free MHC I
title_fullStr The ER folding sensor UGGT1 acts on TAPBPR-chaperoned peptide-free MHC I
title_full_unstemmed The ER folding sensor UGGT1 acts on TAPBPR-chaperoned peptide-free MHC I
title_short The ER folding sensor UGGT1 acts on TAPBPR-chaperoned peptide-free MHC I
title_sort er folding sensor uggt1 acts on tapbpr chaperoned peptide free mhc i
topic antigen processing
ER quality control
MHC I chaperones
glycoproteins
adaptive immunity
peptide editing
url https://elifesciences.org/articles/85432
work_keys_str_mv AT linasagert theerfoldingsensoruggt1actsontapbprchaperonedpeptidefreemhci
AT christianwinter theerfoldingsensoruggt1actsontapbprchaperonedpeptidefreemhci
AT inaruppert theerfoldingsensoruggt1actsontapbprchaperonedpeptidefreemhci
AT maximilianzehetmaier theerfoldingsensoruggt1actsontapbprchaperonedpeptidefreemhci
AT christophthomas theerfoldingsensoruggt1actsontapbprchaperonedpeptidefreemhci
AT roberttampe theerfoldingsensoruggt1actsontapbprchaperonedpeptidefreemhci
AT linasagert erfoldingsensoruggt1actsontapbprchaperonedpeptidefreemhci
AT christianwinter erfoldingsensoruggt1actsontapbprchaperonedpeptidefreemhci
AT inaruppert erfoldingsensoruggt1actsontapbprchaperonedpeptidefreemhci
AT maximilianzehetmaier erfoldingsensoruggt1actsontapbprchaperonedpeptidefreemhci
AT christophthomas erfoldingsensoruggt1actsontapbprchaperonedpeptidefreemhci
AT roberttampe erfoldingsensoruggt1actsontapbprchaperonedpeptidefreemhci