Mechanical integrity and erosion resistance of 3D sand printing materials

3D sand printing, a binder jetting-based additive manufacturing process, can directly produce sand molds with complex geometries for high-quality and lightweight metal parts. However, there is still a lack of information on how to degrade and erode the mechanical integrity of 3D sand molds. Here, co...

Full description

Bibliographic Details
Main Authors: Hyeon-Jin Son, Seongwan Jang, Hyo-Jin Hyeon, Hwan-Jong Lee, Jeong-Jik Yang, Beom-Yeol Park, Seong-Sun Gwak, Sung-Won Jang, Chang-Jun Bae
Format: Article
Language:English
Published: Elsevier 2023-09-01
Series:Materials & Design
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0264127523006196
Description
Summary:3D sand printing, a binder jetting-based additive manufacturing process, can directly produce sand molds with complex geometries for high-quality and lightweight metal parts. However, there is still a lack of information on how to degrade and erode the mechanical integrity of 3D sand molds. Here, correlations have been investigated between 3D printing materials and various properties of 3D-printed molds: microstructure, flexural strength, reliability, and erosion resistance. As a result, given the mechanical strength and the formation of the binder necks, the most appropriate flexural strength of 4.2 MPa, reliability of 7.8, and high erosion resistance of 86% are achieved from the 3D-printed sand molds prepared with a binder of 2 wt% and an activator of 0.25 wt%. The exhaust manifold casted using a 3D-printed sand mold with optimum conditions, it shows the same or better performance than the genuine part.
ISSN:0264-1275