Genome-wide analysis of basic helix-loop-helix transcription factors in papaya (Carica papaya L.)

The basic helix-loop-helix (bHLH) transcription factors (TFs) have been identified and functionally characterized in many plants. However, no comprehensive analysis of the bHLH family in papaya (Carica papaya L.) has been reported previously. Here, a total of 73 CpbHLHs were identified in papaya, an...

Full description

Bibliographic Details
Main Authors: Min Yang, Chenping Zhou, Hu Yang, Ruibin Kuang, Bingxiong Huang, Yuerong Wei
Format: Article
Language:English
Published: PeerJ Inc. 2020-07-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/9319.pdf
Description
Summary:The basic helix-loop-helix (bHLH) transcription factors (TFs) have been identified and functionally characterized in many plants. However, no comprehensive analysis of the bHLH family in papaya (Carica papaya L.) has been reported previously. Here, a total of 73 CpbHLHs were identified in papaya, and these genes were classified into 18 subfamilies based on phylogenetic analysis. Almost all of the CpbHLHs in the same subfamily shared similar gene structures and protein motifs according to analysis of exon/intron organizations and motif compositions. The number of exons in CpbHLHs varied from one to 10 with an average of five. The amino acid sequences of the bHLH domains were quite conservative, especially Leu-27 and Leu-63. Promoter cis-element analysis revealed that most of the CpbHLHs contained cis-elements that can respond to various biotic/abiotic stress-related events. Gene ontology (GO) analysis revealed that CpbHLHs mainly functions in protein dimerization activity and DNA-binding, and most CpbHLHs were predicted to localize in the nucleus. Abiotic stress treatment and quantitative real-time PCR (qRT-PCR) revealed some important candidate CpbHLHs that might be responsible for abiotic stress responses in papaya. These findings would lay a foundation for further investigate of the molecular functions of CpbHLHs.
ISSN:2167-8359