Topological Design of a Hinger Bracket Based on Additive Manufacturing

Topology optimization technology is often used in the design of lightweight structures under the condition that mechanical performance should be guaranteed, but a topology-optimized structure is often complicated and difficult to process using traditional machining technology. In this study, the top...

Full description

Bibliographic Details
Main Authors: Baocheng Xie, Xilong Wu, Le Liu, Yuan Zhang
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/16/11/4061
Description
Summary:Topology optimization technology is often used in the design of lightweight structures under the condition that mechanical performance should be guaranteed, but a topology-optimized structure is often complicated and difficult to process using traditional machining technology. In this study, the topology optimization method, with a volume constraint and the minimization of structural flexibility, is applied to the lightweight design of a hinge bracket for civil aircraft. A mechanical performance analysis is conducted using numerical simulations to obtain the stress and deformation of the hinge bracket before and after topology optimization. The numerical simulation results show that the topology-optimized hinge bracket has good mechanical properties, and its weight was reduced by 28% compared with the original design of the model. In addition, the hinge bracket samples before and after topology optimization are prepared with additive manufacturing technology and mechanical performance tests are conducted using a universal mechanical testing machine. The test results show that the topology-optimized hinge bracket can satisfy the mechanical performance requirements of a hinge bracket at a weight loss ratio of 28%.
ISSN:1996-1944