Updated Radiative Transfer Model for Titan in the Near-infrared Wavelength Range: Validation against Huygens Atmospheric and Surface Measurements and Application to the Cassini/VIMS Observations of the Dragonfly Landing Area

We present an analysis of Titan data acquired by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) at the landing site of the Dragonfly mission, using a new version of our radiative transfer model for Titan, with significant updates for the spectroscopic parameters of atmospheric gases and...

Full description

Bibliographic Details
Main Authors: M. Es-sayeh, S. Rodriguez, M. Coutelier, P. Rannou, B. Bézard, L. Maltagliati, T. Cornet, B. Grieger, E. Karkoschka, S. Le Mouélic, A. Le Gall, C. Neish, S. MacKenzie, A. Solomonidou, C. Sotin, A. Coustenis
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Planetary Science Journal
Subjects:
Online Access:https://doi.org/10.3847/PSJ/acbd37
_version_ 1797327474278793216
author M. Es-sayeh
S. Rodriguez
M. Coutelier
P. Rannou
B. Bézard
L. Maltagliati
T. Cornet
B. Grieger
E. Karkoschka
S. Le Mouélic
A. Le Gall
C. Neish
S. MacKenzie
A. Solomonidou
C. Sotin
A. Coustenis
author_facet M. Es-sayeh
S. Rodriguez
M. Coutelier
P. Rannou
B. Bézard
L. Maltagliati
T. Cornet
B. Grieger
E. Karkoschka
S. Le Mouélic
A. Le Gall
C. Neish
S. MacKenzie
A. Solomonidou
C. Sotin
A. Coustenis
author_sort M. Es-sayeh
collection DOAJ
description We present an analysis of Titan data acquired by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) at the landing site of the Dragonfly mission, using a new version of our radiative transfer model for Titan, with significant updates for the spectroscopic parameters of atmospheric gases and photochemical aerosols. Our updated radiative transfer model is validated against the in situ spectroscopic measurements of the Huygens probe during its descent and once landed. We confirm that aerosols with a fractal dimension of 2.3–2.4 provide the best fit to the observations. We apply our radiative transfer model to four VIMS data cubes over the Selk crater region including the Dragonfly landing and exploration areas, further validating our model by producing consistent aerosol population and surface albedo maps. These infrared albedo maps, further corrected from the photometry, enable us to study the Selk crater region in terms of surface composition, landscape formation, and evolution. Our results suggest that the Selk crater is in an intermediate state of degradation and that the mountainous terrains of the area (including the crater rim and ejecta) are likely to be dominated by fine grains of tholin-like sediment. This organic sediment would be transported to the lowlands (crater floor and surrounding plains), possibly with water ice particles, by rivers, and further deposited and processed to form the sand particles that feed the neighboring dune fields. These results provide information for the operational and scientific preparation of the Dragonfly mission, paving the way for future exploration of Titan’s surface composition and geology.
first_indexed 2024-03-08T06:38:53Z
format Article
id doaj.art-4b1f068376ee44098b117b659fbe2c81
institution Directory Open Access Journal
issn 2632-3338
language English
last_indexed 2024-03-08T06:38:53Z
publishDate 2023-01-01
publisher IOP Publishing
record_format Article
series The Planetary Science Journal
spelling doaj.art-4b1f068376ee44098b117b659fbe2c812024-02-03T09:19:01ZengIOP PublishingThe Planetary Science Journal2632-33382023-01-01434410.3847/PSJ/acbd37Updated Radiative Transfer Model for Titan in the Near-infrared Wavelength Range: Validation against Huygens Atmospheric and Surface Measurements and Application to the Cassini/VIMS Observations of the Dragonfly Landing AreaM. Es-sayeh0https://orcid.org/0000-0002-0643-4323S. Rodriguez1https://orcid.org/0000-0003-1219-0641M. Coutelier2https://orcid.org/0000-0002-0776-2732P. Rannou3https://orcid.org/0000-0003-0836-723XB. Bézard4https://orcid.org/0000-0002-5433-5661L. Maltagliati5T. Cornet6https://orcid.org/0000-0001-5971-0056B. Grieger7E. Karkoschka8https://orcid.org/0000-0002-4165-0064S. Le Mouélic9https://orcid.org/0000-0001-5260-1367A. Le Gall10https://orcid.org/0000-0002-9023-4868C. Neish11https://orcid.org/0000-0003-3254-8348S. MacKenzie12https://orcid.org/0000-0002-1658-9687A. Solomonidou13C. Sotin14https://orcid.org/0000-0003-3947-1072A. Coustenis15https://orcid.org/0000-0003-3414-3491Université Paris Cité , Institut de physique du globe de Paris (IPGP), CNRS, Paris, France ; essayeh@ipgp.frUniversité Paris Cité , Institut de physique du globe de Paris (IPGP), CNRS, Paris, France ; essayeh@ipgp.frLATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université , CNRS, Guyancourt, FranceGroupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims Champagne-Ardenne , Reims, FranceLESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université , Université Paris Cité, 5 place Jules Janssen, F-92195, Meudon, FranceNature Astronomy, Springer Nature, 4 Crinan Street, London N1 9XW, UKAurora Technology B.V. for ESA—European Space Agency, European Space Astronomy Centre (ESAC) , Camino Bajo del Castillo s/n, Urb. Villafranca del Castillo, E-28692 Villanueva de la Cañada, Madrid, SpainAurora Technology B.V. for ESA—European Space Agency, European Space Astronomy Centre (ESAC) , Camino Bajo del Castillo s/n, Urb. Villafranca del Castillo, E-28692 Villanueva de la Cañada, Madrid, SpainLunar and Planetary Laboratory , 1629 E University Boulevard, Tucson, AZ 85721-0092, USALaboratoire de Planétologie et Géosciences, CNRS UMR 6112, Nantes Université , Université d’Angers, Université du Mans, Nantes, FranceLaboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), UVSQ/CNRS/Paris VI, UMR 8190, F-78280 Guyancourt, Institut Universitaire de France (IUF) , Paris, FranceDepartment of Earth Sciences, The University of Western Ontario , London, ON N6A 5B7, CanadaJohns Hopkins University Applied Physics Laboratory , 11100 Johns Hopkins Road, Laurel, MD 20723, USAHellenic Space Center , Athens, GreeceLaboratoire de Planétologie et Géosciences, CNRS UMR 6112, Nantes Université , Université d’Angers, Université du Mans, Nantes, FranceLESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université , Université Paris Cité, 5 place Jules Janssen, F-92195, Meudon, FranceWe present an analysis of Titan data acquired by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) at the landing site of the Dragonfly mission, using a new version of our radiative transfer model for Titan, with significant updates for the spectroscopic parameters of atmospheric gases and photochemical aerosols. Our updated radiative transfer model is validated against the in situ spectroscopic measurements of the Huygens probe during its descent and once landed. We confirm that aerosols with a fractal dimension of 2.3–2.4 provide the best fit to the observations. We apply our radiative transfer model to four VIMS data cubes over the Selk crater region including the Dragonfly landing and exploration areas, further validating our model by producing consistent aerosol population and surface albedo maps. These infrared albedo maps, further corrected from the photometry, enable us to study the Selk crater region in terms of surface composition, landscape formation, and evolution. Our results suggest that the Selk crater is in an intermediate state of degradation and that the mountainous terrains of the area (including the crater rim and ejecta) are likely to be dominated by fine grains of tholin-like sediment. This organic sediment would be transported to the lowlands (crater floor and surrounding plains), possibly with water ice particles, by rivers, and further deposited and processed to form the sand particles that feed the neighboring dune fields. These results provide information for the operational and scientific preparation of the Dragonfly mission, paving the way for future exploration of Titan’s surface composition and geology.https://doi.org/10.3847/PSJ/acbd37TitanRadiative transferNear infrared astronomyPlanetary atmospheresPlanetary surfaces
spellingShingle M. Es-sayeh
S. Rodriguez
M. Coutelier
P. Rannou
B. Bézard
L. Maltagliati
T. Cornet
B. Grieger
E. Karkoschka
S. Le Mouélic
A. Le Gall
C. Neish
S. MacKenzie
A. Solomonidou
C. Sotin
A. Coustenis
Updated Radiative Transfer Model for Titan in the Near-infrared Wavelength Range: Validation against Huygens Atmospheric and Surface Measurements and Application to the Cassini/VIMS Observations of the Dragonfly Landing Area
The Planetary Science Journal
Titan
Radiative transfer
Near infrared astronomy
Planetary atmospheres
Planetary surfaces
title Updated Radiative Transfer Model for Titan in the Near-infrared Wavelength Range: Validation against Huygens Atmospheric and Surface Measurements and Application to the Cassini/VIMS Observations of the Dragonfly Landing Area
title_full Updated Radiative Transfer Model for Titan in the Near-infrared Wavelength Range: Validation against Huygens Atmospheric and Surface Measurements and Application to the Cassini/VIMS Observations of the Dragonfly Landing Area
title_fullStr Updated Radiative Transfer Model for Titan in the Near-infrared Wavelength Range: Validation against Huygens Atmospheric and Surface Measurements and Application to the Cassini/VIMS Observations of the Dragonfly Landing Area
title_full_unstemmed Updated Radiative Transfer Model for Titan in the Near-infrared Wavelength Range: Validation against Huygens Atmospheric and Surface Measurements and Application to the Cassini/VIMS Observations of the Dragonfly Landing Area
title_short Updated Radiative Transfer Model for Titan in the Near-infrared Wavelength Range: Validation against Huygens Atmospheric and Surface Measurements and Application to the Cassini/VIMS Observations of the Dragonfly Landing Area
title_sort updated radiative transfer model for titan in the near infrared wavelength range validation against huygens atmospheric and surface measurements and application to the cassini vims observations of the dragonfly landing area
topic Titan
Radiative transfer
Near infrared astronomy
Planetary atmospheres
Planetary surfaces
url https://doi.org/10.3847/PSJ/acbd37
work_keys_str_mv AT messayeh updatedradiativetransfermodelfortitaninthenearinfraredwavelengthrangevalidationagainsthuygensatmosphericandsurfacemeasurementsandapplicationtothecassinivimsobservationsofthedragonflylandingarea
AT srodriguez updatedradiativetransfermodelfortitaninthenearinfraredwavelengthrangevalidationagainsthuygensatmosphericandsurfacemeasurementsandapplicationtothecassinivimsobservationsofthedragonflylandingarea
AT mcoutelier updatedradiativetransfermodelfortitaninthenearinfraredwavelengthrangevalidationagainsthuygensatmosphericandsurfacemeasurementsandapplicationtothecassinivimsobservationsofthedragonflylandingarea
AT prannou updatedradiativetransfermodelfortitaninthenearinfraredwavelengthrangevalidationagainsthuygensatmosphericandsurfacemeasurementsandapplicationtothecassinivimsobservationsofthedragonflylandingarea
AT bbezard updatedradiativetransfermodelfortitaninthenearinfraredwavelengthrangevalidationagainsthuygensatmosphericandsurfacemeasurementsandapplicationtothecassinivimsobservationsofthedragonflylandingarea
AT lmaltagliati updatedradiativetransfermodelfortitaninthenearinfraredwavelengthrangevalidationagainsthuygensatmosphericandsurfacemeasurementsandapplicationtothecassinivimsobservationsofthedragonflylandingarea
AT tcornet updatedradiativetransfermodelfortitaninthenearinfraredwavelengthrangevalidationagainsthuygensatmosphericandsurfacemeasurementsandapplicationtothecassinivimsobservationsofthedragonflylandingarea
AT bgrieger updatedradiativetransfermodelfortitaninthenearinfraredwavelengthrangevalidationagainsthuygensatmosphericandsurfacemeasurementsandapplicationtothecassinivimsobservationsofthedragonflylandingarea
AT ekarkoschka updatedradiativetransfermodelfortitaninthenearinfraredwavelengthrangevalidationagainsthuygensatmosphericandsurfacemeasurementsandapplicationtothecassinivimsobservationsofthedragonflylandingarea
AT slemouelic updatedradiativetransfermodelfortitaninthenearinfraredwavelengthrangevalidationagainsthuygensatmosphericandsurfacemeasurementsandapplicationtothecassinivimsobservationsofthedragonflylandingarea
AT alegall updatedradiativetransfermodelfortitaninthenearinfraredwavelengthrangevalidationagainsthuygensatmosphericandsurfacemeasurementsandapplicationtothecassinivimsobservationsofthedragonflylandingarea
AT cneish updatedradiativetransfermodelfortitaninthenearinfraredwavelengthrangevalidationagainsthuygensatmosphericandsurfacemeasurementsandapplicationtothecassinivimsobservationsofthedragonflylandingarea
AT smackenzie updatedradiativetransfermodelfortitaninthenearinfraredwavelengthrangevalidationagainsthuygensatmosphericandsurfacemeasurementsandapplicationtothecassinivimsobservationsofthedragonflylandingarea
AT asolomonidou updatedradiativetransfermodelfortitaninthenearinfraredwavelengthrangevalidationagainsthuygensatmosphericandsurfacemeasurementsandapplicationtothecassinivimsobservationsofthedragonflylandingarea
AT csotin updatedradiativetransfermodelfortitaninthenearinfraredwavelengthrangevalidationagainsthuygensatmosphericandsurfacemeasurementsandapplicationtothecassinivimsobservationsofthedragonflylandingarea
AT acoustenis updatedradiativetransfermodelfortitaninthenearinfraredwavelengthrangevalidationagainsthuygensatmosphericandsurfacemeasurementsandapplicationtothecassinivimsobservationsofthedragonflylandingarea