On non-oscillation on semi-axis of solutions of second order deviating differential equations

We obtain conditions for existence and (almost) non-oscillation of solutions of a second order linear homogeneous functional differential equations \begin{equation*} u"(x)+\sum_i p_i(x) u'(h_i(x))+\sum_i q_i(x) u(g_i(x)) = 0 \end{equation*} without the delay conditions $h_i(x),g_i(x)\l...

Full description

Bibliographic Details
Main Authors: Sergey Labovskiy, Manuel Alves
Format: Article
Language:English
Published: Institute of Mathematics of the Czech Academy of Science 2018-12-01
Series:Mathematica Bohemica
Subjects:
Online Access:http://mb.math.cas.cz/full/143/4/mb143_4_3.pdf
Description
Summary:We obtain conditions for existence and (almost) non-oscillation of solutions of a second order linear homogeneous functional differential equations \begin{equation*} u"(x)+\sum_i p_i(x) u'(h_i(x))+\sum_i q_i(x) u(g_i(x)) = 0 \end{equation*} without the delay conditions $h_i(x),g_i(x)\le x$, $i=1,2,\ldots$, and u"(x)+\int_0^{\infty}u'(s){\rm d}_sr_1(x,s)+\int_0^{\infty} u(s){\rm d}_sr_0(x,s) = 0.
ISSN:0862-7959
2464-7136