Existence of weak solutions for degenerate semilinear elliptic equations in unbounded domains

In this study, we prove the existence of a weak solution for the degenerate semilinear elliptic Dirichlet boundary-value problem $$displaylines{ Lu-mu u g_{1} + h(u) g_{2}= fquad hbox{in }Omega,cr u = 0quad hbox{on }partialOmega }$$ in a suitable weighted Sobolev space. Here the domain $Omega...

Full description

Bibliographic Details
Main Authors: Venkataramanarao Raghavendra, Rasmita Kar
Format: Article
Language:English
Published: Texas State University 2009-12-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2009/160/abstr.html
_version_ 1818956832462340096
author Venkataramanarao Raghavendra
Rasmita Kar
author_facet Venkataramanarao Raghavendra
Rasmita Kar
author_sort Venkataramanarao Raghavendra
collection DOAJ
description In this study, we prove the existence of a weak solution for the degenerate semilinear elliptic Dirichlet boundary-value problem $$displaylines{ Lu-mu u g_{1} + h(u) g_{2}= fquad hbox{in }Omega,cr u = 0quad hbox{on }partialOmega }$$ in a suitable weighted Sobolev space. Here the domain $Omegasubsetmathbb{R}^{n}$, $ngeq 3$, is not necessarily bounded, and $h$ is a continuous bounded nonlinearity. The theory is also extended for $h$ continuous and unbounded.
first_indexed 2024-12-20T11:00:13Z
format Article
id doaj.art-4b271bb5b32a43458c1239dba18281b5
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-20T11:00:13Z
publishDate 2009-12-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-4b271bb5b32a43458c1239dba18281b52022-12-21T19:43:02ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912009-12-012009160,17Existence of weak solutions for degenerate semilinear elliptic equations in unbounded domainsVenkataramanarao RaghavendraRasmita KarIn this study, we prove the existence of a weak solution for the degenerate semilinear elliptic Dirichlet boundary-value problem $$displaylines{ Lu-mu u g_{1} + h(u) g_{2}= fquad hbox{in }Omega,cr u = 0quad hbox{on }partialOmega }$$ in a suitable weighted Sobolev space. Here the domain $Omegasubsetmathbb{R}^{n}$, $ngeq 3$, is not necessarily bounded, and $h$ is a continuous bounded nonlinearity. The theory is also extended for $h$ continuous and unbounded.http://ejde.math.txstate.edu/Volumes/2009/160/abstr.htmlDegenerate equationsweighted Sobolev spaceunbounded domain
spellingShingle Venkataramanarao Raghavendra
Rasmita Kar
Existence of weak solutions for degenerate semilinear elliptic equations in unbounded domains
Electronic Journal of Differential Equations
Degenerate equations
weighted Sobolev space
unbounded domain
title Existence of weak solutions for degenerate semilinear elliptic equations in unbounded domains
title_full Existence of weak solutions for degenerate semilinear elliptic equations in unbounded domains
title_fullStr Existence of weak solutions for degenerate semilinear elliptic equations in unbounded domains
title_full_unstemmed Existence of weak solutions for degenerate semilinear elliptic equations in unbounded domains
title_short Existence of weak solutions for degenerate semilinear elliptic equations in unbounded domains
title_sort existence of weak solutions for degenerate semilinear elliptic equations in unbounded domains
topic Degenerate equations
weighted Sobolev space
unbounded domain
url http://ejde.math.txstate.edu/Volumes/2009/160/abstr.html
work_keys_str_mv AT venkataramanaraoraghavendra existenceofweaksolutionsfordegeneratesemilinearellipticequationsinunboundeddomains
AT rasmitakar existenceofweaksolutionsfordegeneratesemilinearellipticequationsinunboundeddomains