Properties of restricted randomization with implications for experimental design

Recently, there has been increasing interest in the use of heavily restricted randomization designs which enforce balance on observed covariates in randomized controlled trials. However, when restrictions are strict, there is a risk that the treatment effect estimator will have a very high mean squa...

Full description

Bibliographic Details
Main Authors: Nordin Mattias, Schultzberg Mårten
Format: Article
Language:English
Published: De Gruyter 2022-09-01
Series:Journal of Causal Inference
Subjects:
Online Access:https://doi.org/10.1515/jci-2021-0057
Description
Summary:Recently, there has been increasing interest in the use of heavily restricted randomization designs which enforce balance on observed covariates in randomized controlled trials. However, when restrictions are strict, there is a risk that the treatment effect estimator will have a very high mean squared error (MSE). In this article, we formalize this risk and propose a novel combinatoric-based approach to describe and address this issue. First, we validate our new approach by re-proving some known properties of complete randomization and restricted randomization. Second, we propose a novel diagnostic measure for restricted designs that only use the information embedded in the combinatorics of the design. Third, we show that the variance of the MSE of the difference-in-means estimator in a randomized experiment is a linear function of this diagnostic measure. Finally, we identify situations in which restricted designs can lead to an increased risk of getting a high MSE and discuss how our diagnostic measure can be used to detect such designs. Our results have implications for any restricted randomization design and can be used to evaluate the trade-off between enforcing balance on observed covariates and avoiding too restrictive designs.
ISSN:2193-3685