Robust perovskite formation via vacuum thermal annealing for indoor perovskite solar cells

Abstract Perovskite materials are fascinating candidates for the next-generation solar devices. With long charge carrier lifetime, metal-halide perovskites are known to be good candidates for low-light harvesting. To match the irradiance spectra of indoor light, we configured a triple-cation perovsk...

Full description

Bibliographic Details
Main Authors: Kwanchai Penpong, Chaowaphat Seriwatanachai, Atittaya Naikaew, Napan Phuphathanaphong, Ko Ko Shin Thant, Ladda Srathongsian, Thunrada Sukwiboon, Anuchytt Inna, Somboon Sahasithiwat, Pasit Pakawatpanurut, Duangmanee Wongratanaphisan, Pipat Ruankham, Pongsakorn Kanjanaboos
Format: Article
Language:English
Published: Nature Portfolio 2023-07-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-37155-4
Description
Summary:Abstract Perovskite materials are fascinating candidates for the next-generation solar devices. With long charge carrier lifetime, metal-halide perovskites are known to be good candidates for low-light harvesting. To match the irradiance spectra of indoor light, we configured a triple-cation perovskite material with appropriate content of bromide and chloride (FA0.45MA0.49Cs0.06Pb(I0.62Br0.32Cl0.06)3) to achieve an optimum band gap (Eg) of $$\sim$$ ∼ 1.80 eV. With low photon flux at indoor condition, minimal recombination is highly desirable. To achieve such goal, we, for the first time, combined dual usage of antisolvent deposition and vacuum thermal annealing, namely VTA, to fabricate a high-quality perovskite film. VTA leads to compact, dense, and hard morphology while suppressing trap states at surfaces and grain boundaries, which are key culprits for exciton losses. With low-cost carbon electrode architecture, VTA devices exhibited average power conversion efficiency (PCE) of 27.7 ± 2.7% with peak PCE of 32.0% (Shockley–Queisser limit of 50–60%) and average open-circuit voltage (Voc) of 0.93 ± 0.02 V with peak Voc of 0.96 V, significantly more than those of control and the vacuum treatment prior to heat.
ISSN:2045-2322