Limiting the Collection of Ground Truth Data for Land Use and Land Cover Maps with Machine Learning Algorithms
Land use and land cover (LULC) classification maps help understand the state and trends of agricultural production and provide insights for applications in environmental monitoring. One of the major downfalls of the LULC technique is inherently linked to its need for ground truth data to cross-valid...
Hlavní autoři: | Usman Ali, Travis J. Esau, Aitazaz A. Farooque, Qamar U. Zaman, Farhat Abbas, Mathieu F. Bilodeau |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
MDPI AG
2022-06-01
|
Edice: | ISPRS International Journal of Geo-Information |
Témata: | |
On-line přístup: | https://www.mdpi.com/2220-9964/11/6/333 |
Podobné jednotky
-
Evaluation of Different Classification Algorithms for Land Use Land Cover Mapping
Autor: Kaifi Chomani, a další
Vydáno: (2024-08-01) -
Object-based approaches for land use-land cover classification using high resolution quick bird satellite imagery (a case study: Kerbela, Iraq)
Autor: Hussein Sabah Jaber, a další
Vydáno: (2022-06-01) -
Sen-2 LULC: Land use land cover dataset for deep learning approaches
Autor: Suraj Sawant, a další
Vydáno: (2023-12-01) -
A Framework of Filtering Rules over Ground Truth Samples to Achieve Higher Accuracy in Land Cover Maps
Autor: Mario Padial-Iglesias, a další
Vydáno: (2021-07-01) -
Development of a convolutional neural network to accurately detect land use and land cover
Autor: Carolina Acuña-Alonso, a další
Vydáno: (2024-06-01)