Limiting the Collection of Ground Truth Data for Land Use and Land Cover Maps with Machine Learning Algorithms
Land use and land cover (LULC) classification maps help understand the state and trends of agricultural production and provide insights for applications in environmental monitoring. One of the major downfalls of the LULC technique is inherently linked to its need for ground truth data to cross-valid...
Κύριοι συγγραφείς: | Usman Ali, Travis J. Esau, Aitazaz A. Farooque, Qamar U. Zaman, Farhat Abbas, Mathieu F. Bilodeau |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
MDPI AG
2022-06-01
|
Σειρά: | ISPRS International Journal of Geo-Information |
Θέματα: | |
Διαθέσιμο Online: | https://www.mdpi.com/2220-9964/11/6/333 |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Evaluation of Different Classification Algorithms for Land Use Land Cover Mapping
ανά: Kaifi Chomani, κ.ά.
Έκδοση: (2024-08-01) -
Object-based approaches for land use-land cover classification using high resolution quick bird satellite imagery (a case study: Kerbela, Iraq)
ανά: Hussein Sabah Jaber, κ.ά.
Έκδοση: (2022-06-01) -
Sen-2 LULC: Land use land cover dataset for deep learning approaches
ανά: Suraj Sawant, κ.ά.
Έκδοση: (2023-12-01) -
A Framework of Filtering Rules over Ground Truth Samples to Achieve Higher Accuracy in Land Cover Maps
ανά: Mario Padial-Iglesias, κ.ά.
Έκδοση: (2021-07-01) -
Development of a convolutional neural network to accurately detect land use and land cover
ανά: Carolina Acuña-Alonso, κ.ά.
Έκδοση: (2024-06-01)