Limiting the Collection of Ground Truth Data for Land Use and Land Cover Maps with Machine Learning Algorithms
Land use and land cover (LULC) classification maps help understand the state and trends of agricultural production and provide insights for applications in environmental monitoring. One of the major downfalls of the LULC technique is inherently linked to its need for ground truth data to cross-valid...
Hoofdauteurs: | Usman Ali, Travis J. Esau, Aitazaz A. Farooque, Qamar U. Zaman, Farhat Abbas, Mathieu F. Bilodeau |
---|---|
Formaat: | Artikel |
Taal: | English |
Gepubliceerd in: |
MDPI AG
2022-06-01
|
Reeks: | ISPRS International Journal of Geo-Information |
Onderwerpen: | |
Online toegang: | https://www.mdpi.com/2220-9964/11/6/333 |
Gelijkaardige items
-
Evaluation of Different Classification Algorithms for Land Use Land Cover Mapping
door: Kaifi Chomani, et al.
Gepubliceerd in: (2024-08-01) -
Object-based approaches for land use-land cover classification using high resolution quick bird satellite imagery (a case study: Kerbela, Iraq)
door: Hussein Sabah Jaber, et al.
Gepubliceerd in: (2022-06-01) -
Sen-2 LULC: Land use land cover dataset for deep learning approaches
door: Suraj Sawant, et al.
Gepubliceerd in: (2023-12-01) -
A Framework of Filtering Rules over Ground Truth Samples to Achieve Higher Accuracy in Land Cover Maps
door: Mario Padial-Iglesias, et al.
Gepubliceerd in: (2021-07-01) -
Development of a convolutional neural network to accurately detect land use and land cover
door: Carolina Acuña-Alonso, et al.
Gepubliceerd in: (2024-06-01)