Limiting the Collection of Ground Truth Data for Land Use and Land Cover Maps with Machine Learning Algorithms
Land use and land cover (LULC) classification maps help understand the state and trends of agricultural production and provide insights for applications in environmental monitoring. One of the major downfalls of the LULC technique is inherently linked to its need for ground truth data to cross-valid...
Main Authors: | Usman Ali, Travis J. Esau, Aitazaz A. Farooque, Qamar U. Zaman, Farhat Abbas, Mathieu F. Bilodeau |
---|---|
Format: | Article |
Jezik: | English |
Izdano: |
MDPI AG
2022-06-01
|
Serija: | ISPRS International Journal of Geo-Information |
Teme: | |
Online dostop: | https://www.mdpi.com/2220-9964/11/6/333 |
Podobne knjige/članki
-
Evaluation of Different Classification Algorithms for Land Use Land Cover Mapping
od: Kaifi Chomani, et al.
Izdano: (2024-08-01) -
Object-based approaches for land use-land cover classification using high resolution quick bird satellite imagery (a case study: Kerbela, Iraq)
od: Hussein Sabah Jaber, et al.
Izdano: (2022-06-01) -
Sen-2 LULC: Land use land cover dataset for deep learning approaches
od: Suraj Sawant, et al.
Izdano: (2023-12-01) -
A Framework of Filtering Rules over Ground Truth Samples to Achieve Higher Accuracy in Land Cover Maps
od: Mario Padial-Iglesias, et al.
Izdano: (2021-07-01) -
Development of a convolutional neural network to accurately detect land use and land cover
od: Carolina Acuña-Alonso, et al.
Izdano: (2024-06-01)