Limiting the Collection of Ground Truth Data for Land Use and Land Cover Maps with Machine Learning Algorithms
Land use and land cover (LULC) classification maps help understand the state and trends of agricultural production and provide insights for applications in environmental monitoring. One of the major downfalls of the LULC technique is inherently linked to its need for ground truth data to cross-valid...
Những tác giả chính: | Usman Ali, Travis J. Esau, Aitazaz A. Farooque, Qamar U. Zaman, Farhat Abbas, Mathieu F. Bilodeau |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
MDPI AG
2022-06-01
|
Loạt: | ISPRS International Journal of Geo-Information |
Những chủ đề: | |
Truy cập trực tuyến: | https://www.mdpi.com/2220-9964/11/6/333 |
Những quyển sách tương tự
-
Evaluation of Different Classification Algorithms for Land Use Land Cover Mapping
Bằng: Kaifi Chomani, et al.
Được phát hành: (2024-08-01) -
Object-based approaches for land use-land cover classification using high resolution quick bird satellite imagery (a case study: Kerbela, Iraq)
Bằng: Hussein Sabah Jaber, et al.
Được phát hành: (2022-06-01) -
Sen-2 LULC: Land use land cover dataset for deep learning approaches
Bằng: Suraj Sawant, et al.
Được phát hành: (2023-12-01) -
A Framework of Filtering Rules over Ground Truth Samples to Achieve Higher Accuracy in Land Cover Maps
Bằng: Mario Padial-Iglesias, et al.
Được phát hành: (2021-07-01) -
Development of a convolutional neural network to accurately detect land use and land cover
Bằng: Carolina Acuña-Alonso, et al.
Được phát hành: (2024-06-01)