The Dual Orlicz–Aleksandrov–Fenchel Inequality

In this paper, the classical dual mixed volume of star bodies <inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mi>V</mi><mo>˜</mo></mover><mrow><mo>(</mo><msub><mi&...

Full description

Bibliographic Details
Main Author: Chang-Jian Zhao
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/11/2005
_version_ 1797548323812409344
author Chang-Jian Zhao
author_facet Chang-Jian Zhao
author_sort Chang-Jian Zhao
collection DOAJ
description In this paper, the classical dual mixed volume of star bodies <inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mi>V</mi><mo>˜</mo></mover><mrow><mo>(</mo><msub><mi>K</mi><mn>1</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>K</mi><mi>n</mi></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and dual Aleksandrov–Fenchel inequality are extended to the Orlicz space. Under the framework of dual Orlicz-Brunn-Minkowski theory, we put forward a new affine geometric quantity by calculating first order Orlicz variation of the dual mixed volume, and call it <i>Orlicz multiple dual mixed volume.</i> We generalize the fundamental notions and conclusions of the dual mixed volume and dual Aleksandrov-Fenchel inequality to an Orlicz setting. The classical dual Aleksandrov-Fenchel inequality and dual Orlicz-Minkowski inequality are all special cases of the new dual Orlicz-Aleksandrov-Fenchel inequality. The related concepts of <inline-formula><math display="inline"><semantics><msub><mi>L</mi><mi>p</mi></msub></semantics></math></inline-formula>-dual multiple mixed volumes and <inline-formula><math display="inline"><semantics><msub><mi>L</mi><mi>p</mi></msub></semantics></math></inline-formula>-dual Aleksandrov-Fenchel inequality are first derived here. As an application, the dual Orlicz–Brunn–Minkowski inequality for the Orlicz harmonic addition is also established.
first_indexed 2024-03-10T14:57:45Z
format Article
id doaj.art-4b5fa6f23e0647788f8c2f4b1a5e8bad
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T14:57:45Z
publishDate 2020-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-4b5fa6f23e0647788f8c2f4b1a5e8bad2023-11-20T20:26:27ZengMDPI AGMathematics2227-73902020-11-01811200510.3390/math8112005The Dual Orlicz–Aleksandrov–Fenchel InequalityChang-Jian Zhao0Department of Mathematics, China Jiliang University, Hangzhou 310018, ChinaIn this paper, the classical dual mixed volume of star bodies <inline-formula><math display="inline"><semantics><mrow><mover accent="true"><mi>V</mi><mo>˜</mo></mover><mrow><mo>(</mo><msub><mi>K</mi><mn>1</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>K</mi><mi>n</mi></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and dual Aleksandrov–Fenchel inequality are extended to the Orlicz space. Under the framework of dual Orlicz-Brunn-Minkowski theory, we put forward a new affine geometric quantity by calculating first order Orlicz variation of the dual mixed volume, and call it <i>Orlicz multiple dual mixed volume.</i> We generalize the fundamental notions and conclusions of the dual mixed volume and dual Aleksandrov-Fenchel inequality to an Orlicz setting. The classical dual Aleksandrov-Fenchel inequality and dual Orlicz-Minkowski inequality are all special cases of the new dual Orlicz-Aleksandrov-Fenchel inequality. The related concepts of <inline-formula><math display="inline"><semantics><msub><mi>L</mi><mi>p</mi></msub></semantics></math></inline-formula>-dual multiple mixed volumes and <inline-formula><math display="inline"><semantics><msub><mi>L</mi><mi>p</mi></msub></semantics></math></inline-formula>-dual Aleksandrov-Fenchel inequality are first derived here. As an application, the dual Orlicz–Brunn–Minkowski inequality for the Orlicz harmonic addition is also established.https://www.mdpi.com/2227-7390/8/11/2005dual mixed volumedual Aleksandrov–Fenchel inequalityOrlicz harmonic radial additionOrlicz dual mixed volumeOrlicz dual Minkowski inequalitydual Orlicz–Brunn–Minkowski theory
spellingShingle Chang-Jian Zhao
The Dual Orlicz–Aleksandrov–Fenchel Inequality
Mathematics
dual mixed volume
dual Aleksandrov–Fenchel inequality
Orlicz harmonic radial addition
Orlicz dual mixed volume
Orlicz dual Minkowski inequality
dual Orlicz–Brunn–Minkowski theory
title The Dual Orlicz–Aleksandrov–Fenchel Inequality
title_full The Dual Orlicz–Aleksandrov–Fenchel Inequality
title_fullStr The Dual Orlicz–Aleksandrov–Fenchel Inequality
title_full_unstemmed The Dual Orlicz–Aleksandrov–Fenchel Inequality
title_short The Dual Orlicz–Aleksandrov–Fenchel Inequality
title_sort dual orlicz aleksandrov fenchel inequality
topic dual mixed volume
dual Aleksandrov–Fenchel inequality
Orlicz harmonic radial addition
Orlicz dual mixed volume
Orlicz dual Minkowski inequality
dual Orlicz–Brunn–Minkowski theory
url https://www.mdpi.com/2227-7390/8/11/2005
work_keys_str_mv AT changjianzhao thedualorliczaleksandrovfenchelinequality
AT changjianzhao dualorliczaleksandrovfenchelinequality