Linear Rayleigh-Taylor instability for compressible viscoelastic fluids

In this paper, we consider the linear Rayleigh-Taylor instability of an equilibrium state of 3D gravity-driven compressible viscoelastic fluid with the elasticity coefficient $ \kappa $ is less than a critical number $ \kappa_{c} $ in a moving horizontal periodic domain. We first construct the maxim...

Full description

Bibliographic Details
Main Author: Caifeng Liu
Format: Article
Language:English
Published: AIMS Press 2023-04-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2023761?viewType=HTML
_version_ 1827950257388912640
author Caifeng Liu
author_facet Caifeng Liu
author_sort Caifeng Liu
collection DOAJ
description In this paper, we consider the linear Rayleigh-Taylor instability of an equilibrium state of 3D gravity-driven compressible viscoelastic fluid with the elasticity coefficient $ \kappa $ is less than a critical number $ \kappa_{c} $ in a moving horizontal periodic domain. We first construct the maximal growing mode solutions to the linearized equations by studying a family of modified variational problems, and then we prove an estimate for arbitrary solutions to the linearized equations.
first_indexed 2024-04-09T13:23:01Z
format Article
id doaj.art-4b687c499fe849319582fa485bfcc537
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-09T13:23:01Z
publishDate 2023-04-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-4b687c499fe849319582fa485bfcc5372023-05-11T01:02:01ZengAIMS PressAIMS Mathematics2473-69882023-04-0187148941491810.3934/math.2023761Linear Rayleigh-Taylor instability for compressible viscoelastic fluidsCaifeng Liu 0School of Mathematics, Northwest University, Xi'an 710127, ChinaIn this paper, we consider the linear Rayleigh-Taylor instability of an equilibrium state of 3D gravity-driven compressible viscoelastic fluid with the elasticity coefficient $ \kappa $ is less than a critical number $ \kappa_{c} $ in a moving horizontal periodic domain. We first construct the maximal growing mode solutions to the linearized equations by studying a family of modified variational problems, and then we prove an estimate for arbitrary solutions to the linearized equations.https://www.aimspress.com/article/doi/10.3934/math.2023761?viewType=HTMLlinear rayleigh-taylor instabilitycompressible viscoelastic fluidmoving domain
spellingShingle Caifeng Liu
Linear Rayleigh-Taylor instability for compressible viscoelastic fluids
AIMS Mathematics
linear rayleigh-taylor instability
compressible viscoelastic fluid
moving domain
title Linear Rayleigh-Taylor instability for compressible viscoelastic fluids
title_full Linear Rayleigh-Taylor instability for compressible viscoelastic fluids
title_fullStr Linear Rayleigh-Taylor instability for compressible viscoelastic fluids
title_full_unstemmed Linear Rayleigh-Taylor instability for compressible viscoelastic fluids
title_short Linear Rayleigh-Taylor instability for compressible viscoelastic fluids
title_sort linear rayleigh taylor instability for compressible viscoelastic fluids
topic linear rayleigh-taylor instability
compressible viscoelastic fluid
moving domain
url https://www.aimspress.com/article/doi/10.3934/math.2023761?viewType=HTML
work_keys_str_mv AT caifengliu linearrayleightaylorinstabilityforcompressibleviscoelasticfluids