Thin‐Film Composite Cyclomatrix Poly(Phenoxy)Phosphazenes Membranes for Hot Hydrogen Separation

Abstract An interfacial polymerization process is introduced for the fabrication of thermally stable cyclomatrix poly(phenoxy)phosphazenes thin‐film composite membranes that can sieve hydrogen from hot gas mixtures. By replacing the conventionally used aqueous phase with dimethyl sulfoxide/potassium...

Full description

Bibliographic Details
Main Authors: Farzaneh Radmanesh, Ernst J. R. Sudhölter, Alberto Tena, Maria G. Elshof, Nieck E. Benes
Format: Article
Language:English
Published: Wiley-VCH 2023-02-01
Series:Advanced Materials Interfaces
Subjects:
Online Access:https://doi.org/10.1002/admi.202202077
_version_ 1797772448894025728
author Farzaneh Radmanesh
Ernst J. R. Sudhölter
Alberto Tena
Maria G. Elshof
Nieck E. Benes
author_facet Farzaneh Radmanesh
Ernst J. R. Sudhölter
Alberto Tena
Maria G. Elshof
Nieck E. Benes
author_sort Farzaneh Radmanesh
collection DOAJ
description Abstract An interfacial polymerization process is introduced for the fabrication of thermally stable cyclomatrix poly(phenoxy)phosphazenes thin‐film composite membranes that can sieve hydrogen from hot gas mixtures. By replacing the conventionally used aqueous phase with dimethyl sulfoxide/potassium hydroxide, a variety of biphenol molecules are deprotonated to aryloxide anions that react with hexachlorocyclotriphosphazene dissolved in cyclohexane to form a thin film of a highly cross‐linked polymer film. The film membranes have persistent permselectivities for hydrogen over nitrogen (16–27) and methane (14–30) while maintaining hydrogen permeances in the order of (10−8–10−7 mol m−2s−1Pa−1) at temperatures as high as 260 °C and do not lose their performance after exposure to 450 °C. The unprecedented thermal stability of these polymer membranes opens the potential for industrial membrane gas separations at elevated temperatures.
first_indexed 2024-03-12T21:52:04Z
format Article
id doaj.art-4b6e0bee2d8746a1b783f20d5d431954
institution Directory Open Access Journal
issn 2196-7350
language English
last_indexed 2024-03-12T21:52:04Z
publishDate 2023-02-01
publisher Wiley-VCH
record_format Article
series Advanced Materials Interfaces
spelling doaj.art-4b6e0bee2d8746a1b783f20d5d4319542023-07-26T01:35:58ZengWiley-VCHAdvanced Materials Interfaces2196-73502023-02-01104n/an/a10.1002/admi.202202077Thin‐Film Composite Cyclomatrix Poly(Phenoxy)Phosphazenes Membranes for Hot Hydrogen SeparationFarzaneh Radmanesh0Ernst J. R. Sudhölter1Alberto Tena2Maria G. Elshof3Nieck E. Benes4Membrane Science and Technology Cluster, Faculty of Science and Technology MESA+ Institute for Nanotechnology University of Twente P.O. Box 217 Enschede 7500 AE The NetherlandsMembrane Science and Technology Cluster, Faculty of Science and Technology MESA+ Institute for Nanotechnology University of Twente P.O. Box 217 Enschede 7500 AE The NetherlandsThe European Membrane Institute Twente, Faculty of Science and Technology University of Twente P.O. Box 217 Enschede 7500 AE The NetherlandsMembrane Science and Technology Cluster, Faculty of Science and Technology MESA+ Institute for Nanotechnology University of Twente P.O. Box 217 Enschede 7500 AE The NetherlandsMembrane Science and Technology Cluster, Faculty of Science and Technology MESA+ Institute for Nanotechnology University of Twente P.O. Box 217 Enschede 7500 AE The NetherlandsAbstract An interfacial polymerization process is introduced for the fabrication of thermally stable cyclomatrix poly(phenoxy)phosphazenes thin‐film composite membranes that can sieve hydrogen from hot gas mixtures. By replacing the conventionally used aqueous phase with dimethyl sulfoxide/potassium hydroxide, a variety of biphenol molecules are deprotonated to aryloxide anions that react with hexachlorocyclotriphosphazene dissolved in cyclohexane to form a thin film of a highly cross‐linked polymer film. The film membranes have persistent permselectivities for hydrogen over nitrogen (16–27) and methane (14–30) while maintaining hydrogen permeances in the order of (10−8–10−7 mol m−2s−1Pa−1) at temperatures as high as 260 °C and do not lose their performance after exposure to 450 °C. The unprecedented thermal stability of these polymer membranes opens the potential for industrial membrane gas separations at elevated temperatures.https://doi.org/10.1002/admi.202202077gas separationhigh temperatureinterfacial polymerizationmembranespolyphosphazenes
spellingShingle Farzaneh Radmanesh
Ernst J. R. Sudhölter
Alberto Tena
Maria G. Elshof
Nieck E. Benes
Thin‐Film Composite Cyclomatrix Poly(Phenoxy)Phosphazenes Membranes for Hot Hydrogen Separation
Advanced Materials Interfaces
gas separation
high temperature
interfacial polymerization
membranes
polyphosphazenes
title Thin‐Film Composite Cyclomatrix Poly(Phenoxy)Phosphazenes Membranes for Hot Hydrogen Separation
title_full Thin‐Film Composite Cyclomatrix Poly(Phenoxy)Phosphazenes Membranes for Hot Hydrogen Separation
title_fullStr Thin‐Film Composite Cyclomatrix Poly(Phenoxy)Phosphazenes Membranes for Hot Hydrogen Separation
title_full_unstemmed Thin‐Film Composite Cyclomatrix Poly(Phenoxy)Phosphazenes Membranes for Hot Hydrogen Separation
title_short Thin‐Film Composite Cyclomatrix Poly(Phenoxy)Phosphazenes Membranes for Hot Hydrogen Separation
title_sort thin film composite cyclomatrix poly phenoxy phosphazenes membranes for hot hydrogen separation
topic gas separation
high temperature
interfacial polymerization
membranes
polyphosphazenes
url https://doi.org/10.1002/admi.202202077
work_keys_str_mv AT farzanehradmanesh thinfilmcompositecyclomatrixpolyphenoxyphosphazenesmembranesforhothydrogenseparation
AT ernstjrsudholter thinfilmcompositecyclomatrixpolyphenoxyphosphazenesmembranesforhothydrogenseparation
AT albertotena thinfilmcompositecyclomatrixpolyphenoxyphosphazenesmembranesforhothydrogenseparation
AT mariagelshof thinfilmcompositecyclomatrixpolyphenoxyphosphazenesmembranesforhothydrogenseparation
AT nieckebenes thinfilmcompositecyclomatrixpolyphenoxyphosphazenesmembranesforhothydrogenseparation