Importance Analysis of Components of a Multi-Operational-State Power System Using Fault Tree Models

This article describes a case study using a fault tree analysis for a multi-operational-state system (system with several operational states) model with many different technical solutions for the power system of a fishing vessel. We describe the essence of system dependability metamodeling. A vector...

Full description

Bibliographic Details
Main Author: Leszek Chybowski
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Information
Subjects:
Online Access:https://www.mdpi.com/2078-2489/11/1/29
Description
Summary:This article describes a case study using a fault tree analysis for a multi-operational-state system (system with several operational states) model with many different technical solutions for the power system of a fishing vessel. We describe the essence of system dependability metamodeling. A vector of external events was used to construct a detailed metamodel, depending on the operational status being modeled. In a fault tree, individual external events modify the structure of a system. The analysis includes the following operational states: sea voyages of a vessel, hauling in and paying out nets, trawling, staying in a port, and heaving to. For each operational state and assumed system configurations, the importance of system components was determined by calculating the Vesely−Fussell measures. The most important components for each operational state of a system were determined, and the critical system components, that is, those that are important in every operational state and system configuration, were identified.
ISSN:2078-2489