Implementation of Optimized Regenerative Braking in Energy Efficient Driving Strategies

In this paper, determination of optimized regenerative braking-torque function and application in energy efficient driving strategies is presented. The study investigates a lightweight electric vehicle developed for the Shell Eco-Marathon. The measurement-based simulation model was implemented in th...

Full description

Bibliographic Details
Main Authors: Zoltán Pusztai, Péter Kőrös, Ferenc Szauter, Ferenc Friedler
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/6/2682
Description
Summary:In this paper, determination of optimized regenerative braking-torque function and application in energy efficient driving strategies is presented. The study investigates a lightweight electric vehicle developed for the Shell Eco-Marathon. The measurement-based simulation model was implemented in the MATLAB/Simulink environment and used to establish the optimization. The optimization of braking-torque function was performed to maximize the recuperated energy. The determined braking-torque function was applied in a driving strategy optimization framework. The extended driving strategy optimization model is suitable for energy consumption minimization in a designated track. The driving strategy optimization was created for the TT Circuit Assen, where the 2022 Shell Eco-Marathon competition was hosted. The extended optimization resulted in a 2.97% improvement in energy consumption when compared to the result previously achieved, which shows the feasibility of the proposed methodology and optimization model.
ISSN:1996-1073