A Cas3-base editing tool for targetable in vivo mutagenesis

Abstract The generation of genetic diversity via mutagenesis is routinely used for protein engineering and pathway optimization. Current technologies for random mutagenesis often target either the whole genome or relatively narrow windows. To bridge this gap, we developed CoMuTER (Confined Mutagenes...

Full description

Bibliographic Details
Main Authors: Anna Zimmermann, Julian E. Prieto-Vivas, Charlotte Cautereels, Anton Gorkovskiy, Jan Steensels, Yves Van de Peer, Kevin J. Verstrepen
Format: Article
Language:English
Published: Nature Portfolio 2023-06-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-39087-z
_version_ 1797806639135326208
author Anna Zimmermann
Julian E. Prieto-Vivas
Charlotte Cautereels
Anton Gorkovskiy
Jan Steensels
Yves Van de Peer
Kevin J. Verstrepen
author_facet Anna Zimmermann
Julian E. Prieto-Vivas
Charlotte Cautereels
Anton Gorkovskiy
Jan Steensels
Yves Van de Peer
Kevin J. Verstrepen
author_sort Anna Zimmermann
collection DOAJ
description Abstract The generation of genetic diversity via mutagenesis is routinely used for protein engineering and pathway optimization. Current technologies for random mutagenesis often target either the whole genome or relatively narrow windows. To bridge this gap, we developed CoMuTER (Confined Mutagenesis using a Type I-E CRISPR-Cas system), a tool that allows inducible and targetable, in vivo mutagenesis of genomic loci of up to 55 kilobases. CoMuTER employs the targetable helicase Cas3, signature enzyme of the class 1 type I-E CRISPR-Cas system, fused to a cytidine deaminase to unwind and mutate large stretches of DNA at once, including complete metabolic pathways. The tool increases the number of mutations in the target region 350-fold compared to the rest of the genome, with an average of 0.3 mutations per kilobase. We demonstrate the suitability of CoMuTER for pathway optimization by doubling the production of lycopene in Saccharomyces cerevisiae after a single round of mutagenesis.
first_indexed 2024-03-13T06:10:19Z
format Article
id doaj.art-4ba11ca207744a24851d08085ba157b2
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-03-13T06:10:19Z
publishDate 2023-06-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-4ba11ca207744a24851d08085ba157b22023-06-11T11:18:21ZengNature PortfolioNature Communications2041-17232023-06-0114111610.1038/s41467-023-39087-zA Cas3-base editing tool for targetable in vivo mutagenesisAnna Zimmermann0Julian E. Prieto-Vivas1Charlotte Cautereels2Anton Gorkovskiy3Jan Steensels4Yves Van de Peer5Kevin J. Verstrepen6VIB Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyVIB Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyVIB Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyVIB Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyVIB Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyDepartment of Plant Biotechnology and Bioinformatics, Ghent UniversityVIB Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyAbstract The generation of genetic diversity via mutagenesis is routinely used for protein engineering and pathway optimization. Current technologies for random mutagenesis often target either the whole genome or relatively narrow windows. To bridge this gap, we developed CoMuTER (Confined Mutagenesis using a Type I-E CRISPR-Cas system), a tool that allows inducible and targetable, in vivo mutagenesis of genomic loci of up to 55 kilobases. CoMuTER employs the targetable helicase Cas3, signature enzyme of the class 1 type I-E CRISPR-Cas system, fused to a cytidine deaminase to unwind and mutate large stretches of DNA at once, including complete metabolic pathways. The tool increases the number of mutations in the target region 350-fold compared to the rest of the genome, with an average of 0.3 mutations per kilobase. We demonstrate the suitability of CoMuTER for pathway optimization by doubling the production of lycopene in Saccharomyces cerevisiae after a single round of mutagenesis.https://doi.org/10.1038/s41467-023-39087-z
spellingShingle Anna Zimmermann
Julian E. Prieto-Vivas
Charlotte Cautereels
Anton Gorkovskiy
Jan Steensels
Yves Van de Peer
Kevin J. Verstrepen
A Cas3-base editing tool for targetable in vivo mutagenesis
Nature Communications
title A Cas3-base editing tool for targetable in vivo mutagenesis
title_full A Cas3-base editing tool for targetable in vivo mutagenesis
title_fullStr A Cas3-base editing tool for targetable in vivo mutagenesis
title_full_unstemmed A Cas3-base editing tool for targetable in vivo mutagenesis
title_short A Cas3-base editing tool for targetable in vivo mutagenesis
title_sort cas3 base editing tool for targetable in vivo mutagenesis
url https://doi.org/10.1038/s41467-023-39087-z
work_keys_str_mv AT annazimmermann acas3baseeditingtoolfortargetableinvivomutagenesis
AT julianeprietovivas acas3baseeditingtoolfortargetableinvivomutagenesis
AT charlottecautereels acas3baseeditingtoolfortargetableinvivomutagenesis
AT antongorkovskiy acas3baseeditingtoolfortargetableinvivomutagenesis
AT jansteensels acas3baseeditingtoolfortargetableinvivomutagenesis
AT yvesvandepeer acas3baseeditingtoolfortargetableinvivomutagenesis
AT kevinjverstrepen acas3baseeditingtoolfortargetableinvivomutagenesis
AT annazimmermann cas3baseeditingtoolfortargetableinvivomutagenesis
AT julianeprietovivas cas3baseeditingtoolfortargetableinvivomutagenesis
AT charlottecautereels cas3baseeditingtoolfortargetableinvivomutagenesis
AT antongorkovskiy cas3baseeditingtoolfortargetableinvivomutagenesis
AT jansteensels cas3baseeditingtoolfortargetableinvivomutagenesis
AT yvesvandepeer cas3baseeditingtoolfortargetableinvivomutagenesis
AT kevinjverstrepen cas3baseeditingtoolfortargetableinvivomutagenesis