Preparation and Performance of Amphiphilic Random Copolymer Noncovalently Modified MWCNTs/Epoxy Composite
An amphiphilic random copolymer of polyglycidyl methacrylate-co-N-vinyl carbazole P(GMA-co-NVC) was synthesized by free radical polymerization and was used to noncovalently modify multi-walled carbon nanotubes (MWCNTs). The obtained P(GMA-co-NVC)/MWCNTs was mixed with epoxy resin and used to reinfor...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Journal of Materials Engineering
2016-09-01
|
Series: | Cailiao gongcheng |
Subjects: | |
Online Access: | http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.09.017 |
_version_ | 1797967028405927936 |
---|---|
author | MA Qiang LUO Jing CHEN Yuan-xun HUANG Jing LIU Xiao-ya |
author_facet | MA Qiang LUO Jing CHEN Yuan-xun HUANG Jing LIU Xiao-ya |
author_sort | MA Qiang |
collection | DOAJ |
description | An amphiphilic random copolymer of polyglycidyl methacrylate-co-N-vinyl carbazole P(GMA-co-NVC) was synthesized by free radical polymerization and was used to noncovalently modify multi-walled carbon nanotubes (MWCNTs). The obtained P(GMA-co-NVC)/MWCNTs was mixed with epoxy resin and used to reinforce epoxy resin. Polymer modified carbon nanotubes/epoxy resin composites were prepared by a casting molding method. Tensile test, electrical resistivity test and differential scanning calorimeter(DSC) analysis were used to study the effect of polymer modified carbon nanotubes on the mechanical, electrical, and thermal properties of epoxy resin. The results show that the epoxy composite reinforced with P(GMA-co-NVC)/MWCNTs shows a remarkable enhancement in both tensile strength and elongation at break compared to either the pure epoxy or the pristine MWCNTs/epoxy composites. In addition, the electrical conductivity of epoxy is significantly improved and the volume resistivity decreases from 10<sup>14</sup>Ω·m to 10<sup>6</sup>Ω·m with 0.25% mass fraction loading of P(GMA-co-NVC)/MWCNTs. Moreover, glass transition temperature of the epoxy composite also increases from 144℃ to 149℃. |
first_indexed | 2024-04-11T02:24:39Z |
format | Article |
id | doaj.art-4bb512a0937b4e5283a3b3f703edcf21 |
institution | Directory Open Access Journal |
issn | 1001-4381 1001-4381 |
language | zho |
last_indexed | 2024-04-11T02:24:39Z |
publishDate | 2016-09-01 |
publisher | Journal of Materials Engineering |
record_format | Article |
series | Cailiao gongcheng |
spelling | doaj.art-4bb512a0937b4e5283a3b3f703edcf212023-01-02T22:55:36ZzhoJournal of Materials EngineeringCailiao gongcheng1001-43811001-43812016-09-0144910911410.11868/j.issn.1001-4381.2016.09.01720160917Preparation and Performance of Amphiphilic Random Copolymer Noncovalently Modified MWCNTs/Epoxy CompositeMA Qiang0LUO Jing1CHEN Yuan-xun2HUANG Jing3LIU Xiao-ya4The Key Laboratory of Food Colloids and Biotechnology(Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, ChinaThe Key Laboratory of Food Colloids and Biotechnology(Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, ChinaThe Key Laboratory of Food Colloids and Biotechnology(Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, ChinaThe Key Laboratory of Food Colloids and Biotechnology(Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, ChinaThe Key Laboratory of Food Colloids and Biotechnology(Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, ChinaAn amphiphilic random copolymer of polyglycidyl methacrylate-co-N-vinyl carbazole P(GMA-co-NVC) was synthesized by free radical polymerization and was used to noncovalently modify multi-walled carbon nanotubes (MWCNTs). The obtained P(GMA-co-NVC)/MWCNTs was mixed with epoxy resin and used to reinforce epoxy resin. Polymer modified carbon nanotubes/epoxy resin composites were prepared by a casting molding method. Tensile test, electrical resistivity test and differential scanning calorimeter(DSC) analysis were used to study the effect of polymer modified carbon nanotubes on the mechanical, electrical, and thermal properties of epoxy resin. The results show that the epoxy composite reinforced with P(GMA-co-NVC)/MWCNTs shows a remarkable enhancement in both tensile strength and elongation at break compared to either the pure epoxy or the pristine MWCNTs/epoxy composites. In addition, the electrical conductivity of epoxy is significantly improved and the volume resistivity decreases from 10<sup>14</sup>Ω·m to 10<sup>6</sup>Ω·m with 0.25% mass fraction loading of P(GMA-co-NVC)/MWCNTs. Moreover, glass transition temperature of the epoxy composite also increases from 144℃ to 149℃.http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.09.017MWCNTsepoxy resinN-vinyl carbazoleamphiphilic random copolymernoncovalent modification |
spellingShingle | MA Qiang LUO Jing CHEN Yuan-xun HUANG Jing LIU Xiao-ya Preparation and Performance of Amphiphilic Random Copolymer Noncovalently Modified MWCNTs/Epoxy Composite Cailiao gongcheng MWCNTs epoxy resin N-vinyl carbazole amphiphilic random copolymer noncovalent modification |
title | Preparation and Performance of Amphiphilic Random Copolymer Noncovalently Modified MWCNTs/Epoxy Composite |
title_full | Preparation and Performance of Amphiphilic Random Copolymer Noncovalently Modified MWCNTs/Epoxy Composite |
title_fullStr | Preparation and Performance of Amphiphilic Random Copolymer Noncovalently Modified MWCNTs/Epoxy Composite |
title_full_unstemmed | Preparation and Performance of Amphiphilic Random Copolymer Noncovalently Modified MWCNTs/Epoxy Composite |
title_short | Preparation and Performance of Amphiphilic Random Copolymer Noncovalently Modified MWCNTs/Epoxy Composite |
title_sort | preparation and performance of amphiphilic random copolymer noncovalently modified mwcnts epoxy composite |
topic | MWCNTs epoxy resin N-vinyl carbazole amphiphilic random copolymer noncovalent modification |
url | http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.09.017 |
work_keys_str_mv | AT maqiang preparationandperformanceofamphiphilicrandomcopolymernoncovalentlymodifiedmwcntsepoxycomposite AT luojing preparationandperformanceofamphiphilicrandomcopolymernoncovalentlymodifiedmwcntsepoxycomposite AT chenyuanxun preparationandperformanceofamphiphilicrandomcopolymernoncovalentlymodifiedmwcntsepoxycomposite AT huangjing preparationandperformanceofamphiphilicrandomcopolymernoncovalentlymodifiedmwcntsepoxycomposite AT liuxiaoya preparationandperformanceofamphiphilicrandomcopolymernoncovalentlymodifiedmwcntsepoxycomposite |