The Number of Limit Cycles Bifurcating from an Elementary Centre of Hamiltonian Differential Systems

This paper studies the number of small limit cycles produced around an elementary center for Hamiltonian differential systems with the elliptic Hamiltonian function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><...

Full description

Bibliographic Details
Main Authors: Lijun Wei, Yun Tian, Yancong Xu
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/9/1483
_version_ 1827672140488376320
author Lijun Wei
Yun Tian
Yancong Xu
author_facet Lijun Wei
Yun Tian
Yancong Xu
author_sort Lijun Wei
collection DOAJ
description This paper studies the number of small limit cycles produced around an elementary center for Hamiltonian differential systems with the elliptic Hamiltonian function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mfrac><mi>a</mi><mn>4</mn></mfrac><msup><mi>x</mi><mn>4</mn></msup><mrow><mo>(</mo><mi>a</mi><mo>≠</mo><mn>0</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> under two types of polynomial perturbations of degree <i>m</i>, respectively. It is proved that the Hamiltonian system perturbed in Liénard systems can have at least <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mfrac><mrow><mn>3</mn><mi>m</mi><mo>−</mo><mn>1</mn></mrow><mn>4</mn></mfrac><mo>]</mo></mrow></semantics></math></inline-formula> small limit cycles near the center, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>≤</mo><mn>101</mn></mrow></semantics></math></inline-formula>, and that the related near-Hamiltonian system with general polynomial perturbations can have at least <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>+</mo><mo>[</mo><mfrac><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></mfrac><mo>]</mo><mo>−</mo><mn>2</mn></mrow></semantics></math></inline-formula> small-amplitude limit cycles, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>≤</mo><mn>16</mn></mrow></semantics></math></inline-formula>. Furthermore, in any of the cases, the bounds for limit cycles can be reached by studying the isolated zeros of the corresponding first order Melnikov functions and with the help of Maple programs. Here, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mo>·</mo><mo>]</mo></mrow></semantics></math></inline-formula> represents the integer function.
first_indexed 2024-03-10T03:56:30Z
format Article
id doaj.art-4bc520af0e4f4c1fbfffc30b44242db7
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T03:56:30Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-4bc520af0e4f4c1fbfffc30b44242db72023-11-23T08:45:02ZengMDPI AGMathematics2227-73902022-04-01109148310.3390/math10091483The Number of Limit Cycles Bifurcating from an Elementary Centre of Hamiltonian Differential SystemsLijun Wei0Yun Tian1Yancong Xu2School of Mathematics, Hangzhou Normal University, Hangzhou 310036, ChinaDepartment of Mathematics, Shanghai Normal University, Shanghai 200234, ChinaSchool of Mathematics, Hangzhou Normal University, Hangzhou 310036, ChinaThis paper studies the number of small limit cycles produced around an elementary center for Hamiltonian differential systems with the elliptic Hamiltonian function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>y</mi><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>2</mn></msup><mo>−</mo><mfrac><mn>2</mn><mn>3</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mfrac><mi>a</mi><mn>4</mn></mfrac><msup><mi>x</mi><mn>4</mn></msup><mrow><mo>(</mo><mi>a</mi><mo>≠</mo><mn>0</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula> under two types of polynomial perturbations of degree <i>m</i>, respectively. It is proved that the Hamiltonian system perturbed in Liénard systems can have at least <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mfrac><mrow><mn>3</mn><mi>m</mi><mo>−</mo><mn>1</mn></mrow><mn>4</mn></mfrac><mo>]</mo></mrow></semantics></math></inline-formula> small limit cycles near the center, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>≤</mo><mn>101</mn></mrow></semantics></math></inline-formula>, and that the related near-Hamiltonian system with general polynomial perturbations can have at least <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>+</mo><mo>[</mo><mfrac><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></mfrac><mo>]</mo><mo>−</mo><mn>2</mn></mrow></semantics></math></inline-formula> small-amplitude limit cycles, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>≤</mo><mn>16</mn></mrow></semantics></math></inline-formula>. Furthermore, in any of the cases, the bounds for limit cycles can be reached by studying the isolated zeros of the corresponding first order Melnikov functions and with the help of Maple programs. Here, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mo>·</mo><mo>]</mo></mrow></semantics></math></inline-formula> represents the integer function.https://www.mdpi.com/2227-7390/10/9/1483Liénard systemnear-Hamiltonian systemHopf bifurcationelementary center
spellingShingle Lijun Wei
Yun Tian
Yancong Xu
The Number of Limit Cycles Bifurcating from an Elementary Centre of Hamiltonian Differential Systems
Mathematics
Liénard system
near-Hamiltonian system
Hopf bifurcation
elementary center
title The Number of Limit Cycles Bifurcating from an Elementary Centre of Hamiltonian Differential Systems
title_full The Number of Limit Cycles Bifurcating from an Elementary Centre of Hamiltonian Differential Systems
title_fullStr The Number of Limit Cycles Bifurcating from an Elementary Centre of Hamiltonian Differential Systems
title_full_unstemmed The Number of Limit Cycles Bifurcating from an Elementary Centre of Hamiltonian Differential Systems
title_short The Number of Limit Cycles Bifurcating from an Elementary Centre of Hamiltonian Differential Systems
title_sort number of limit cycles bifurcating from an elementary centre of hamiltonian differential systems
topic Liénard system
near-Hamiltonian system
Hopf bifurcation
elementary center
url https://www.mdpi.com/2227-7390/10/9/1483
work_keys_str_mv AT lijunwei thenumberoflimitcyclesbifurcatingfromanelementarycentreofhamiltoniandifferentialsystems
AT yuntian thenumberoflimitcyclesbifurcatingfromanelementarycentreofhamiltoniandifferentialsystems
AT yancongxu thenumberoflimitcyclesbifurcatingfromanelementarycentreofhamiltoniandifferentialsystems
AT lijunwei numberoflimitcyclesbifurcatingfromanelementarycentreofhamiltoniandifferentialsystems
AT yuntian numberoflimitcyclesbifurcatingfromanelementarycentreofhamiltoniandifferentialsystems
AT yancongxu numberoflimitcyclesbifurcatingfromanelementarycentreofhamiltoniandifferentialsystems