Layer-by-Layer Assembled Nano-Composite Multilayer Gas Barrier Film Manufactured with Stretchable Substrate

Most gas barrier films produce cracks that lead to a significant loss of gas barrier integrity when strain is applied. In order to fabricate stretchable gas barrier films with low water permeability and high endurance after stretching, we used polydiallydimethylammonium (PDDA) mixed with graphene ox...

Full description

Bibliographic Details
Main Authors: SeJung Kim, Tanyoung Kim, Dongsoo Kim, Byeong-Kwon Ju
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/13/5794
Description
Summary:Most gas barrier films produce cracks that lead to a significant loss of gas barrier integrity when strain is applied. In order to fabricate stretchable gas barrier films with low water permeability and high endurance after stretching, we used polydiallydimethylammonium (PDDA) mixed with graphene oxide (GO) and poly (vinyl alcohol) (PVA) mixed with montmorillonite (MMT). These films were manufactured by layer-by-layer assembly on an Ecoflex/polydimethylsiloxane (PDMS) substrate with pre-strain applied. A total of 30 layers of PDDA (GO)/PVA (MMT) coated on the substrate exhibited a low water vapor transmission rate of 2.5 × 10<sup>−2</sup> g/m<sup>2</sup> day after 100 cycles of stretching (30% strain). In addition, they exhibited a high light transmittance of 86.54%. Thus, the prepared stretchable gas barrier film has potential applications as a barrier film in transparent and stretchable electronic devices.
ISSN:2076-3417