The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter

Abstract Challenging the basis of our chemical intuition, recent experimental evidence reveals the presence of a new type of intrinsic fluorescence in biomolecules that exists even in the absence of aromatic or electronically conjugated chemical compounds. The origin of this phenomenon has remained...

Full description

Bibliographic Details
Main Authors: Gonzalo Díaz Mirón, Jonathan A. Semelak, Luca Grisanti, Alex Rodriguez, Irene Conti, Martina Stella, Jayaramakrishnan Velusamy, Nicola Seriani, Nadja Došlić, Ivan Rivalta, Marco Garavelli, Dario A. Estrin, Gabriele S. Kaminski Schierle, Mariano C. González Lebrero, Ali Hassanali, Uriel N. Morzan
Format: Article
Language:English
Published: Nature Portfolio 2023-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-42874-3
_version_ 1797558223989899264
author Gonzalo Díaz Mirón
Jonathan A. Semelak
Luca Grisanti
Alex Rodriguez
Irene Conti
Martina Stella
Jayaramakrishnan Velusamy
Nicola Seriani
Nadja Došlić
Ivan Rivalta
Marco Garavelli
Dario A. Estrin
Gabriele S. Kaminski Schierle
Mariano C. González Lebrero
Ali Hassanali
Uriel N. Morzan
author_facet Gonzalo Díaz Mirón
Jonathan A. Semelak
Luca Grisanti
Alex Rodriguez
Irene Conti
Martina Stella
Jayaramakrishnan Velusamy
Nicola Seriani
Nadja Došlić
Ivan Rivalta
Marco Garavelli
Dario A. Estrin
Gabriele S. Kaminski Schierle
Mariano C. González Lebrero
Ali Hassanali
Uriel N. Morzan
author_sort Gonzalo Díaz Mirón
collection DOAJ
description Abstract Challenging the basis of our chemical intuition, recent experimental evidence reveals the presence of a new type of intrinsic fluorescence in biomolecules that exists even in the absence of aromatic or electronically conjugated chemical compounds. The origin of this phenomenon has remained elusive so far. In the present study, we identify a mechanism underlying this new type of fluorescence in different biological aggregates. By employing non-adiabatic ab initio molecular dynamics simulations combined with a data-driven approach, we characterize the typical ultrafast non-radiative relaxation pathways active in non-fluorescent peptides. We show that the key vibrational mode for the non-radiative decay towards the ground state is the carbonyl elongation. Non-aromatic fluorescence appears to emerge from blocking this mode with strong local interactions such as hydrogen bonds. While we cannot rule out the existence of alternative non-aromatic fluorescence mechanisms in other systems, we demonstrate that this carbonyl-lock mechanism for trapping the excited state leads to the fluorescence yield increase observed experimentally, and set the stage for design principles to realize novel non-invasive biocompatible probes with applications in bioimaging, sensing, and biophotonics.
first_indexed 2024-03-10T17:28:18Z
format Article
id doaj.art-4bd339f5319f46e9b865bb05545ddf7c
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-03-10T17:28:18Z
publishDate 2023-11-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-4bd339f5319f46e9b865bb05545ddf7c2023-11-20T10:06:48ZengNature PortfolioNature Communications2041-17232023-11-0114111310.1038/s41467-023-42874-3The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matterGonzalo Díaz Mirón0Jonathan A. Semelak1Luca Grisanti2Alex Rodriguez3Irene Conti4Martina Stella5Jayaramakrishnan Velusamy6Nicola Seriani7Nadja Došlić8Ivan Rivalta9Marco Garavelli10Dario A. Estrin11Gabriele S. Kaminski Schierle12Mariano C. González Lebrero13Ali Hassanali14Uriel N. Morzan15Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresDepartamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresDivision of Theoretical Physics, Ruder Bošković InstituteCondensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical PhysicsDipartimento di Chimica industriale “Toso Montanari”, Università di BolognaCondensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical PhysicsChemical Engineering and Biotechnology, University of CambridgeCondensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical PhysicsDivision of Theoretical Physics, Ruder Bošković InstituteDipartimento di Chimica industriale “Toso Montanari”, Università di BolognaDipartimento di Chimica industriale “Toso Montanari”, Università di BolognaDepartamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresChemical Engineering and Biotechnology, University of CambridgeDepartamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresCondensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical PhysicsCondensed Matter and Statistical Physics, The Abdus Salam International Centre for Theoretical PhysicsAbstract Challenging the basis of our chemical intuition, recent experimental evidence reveals the presence of a new type of intrinsic fluorescence in biomolecules that exists even in the absence of aromatic or electronically conjugated chemical compounds. The origin of this phenomenon has remained elusive so far. In the present study, we identify a mechanism underlying this new type of fluorescence in different biological aggregates. By employing non-adiabatic ab initio molecular dynamics simulations combined with a data-driven approach, we characterize the typical ultrafast non-radiative relaxation pathways active in non-fluorescent peptides. We show that the key vibrational mode for the non-radiative decay towards the ground state is the carbonyl elongation. Non-aromatic fluorescence appears to emerge from blocking this mode with strong local interactions such as hydrogen bonds. While we cannot rule out the existence of alternative non-aromatic fluorescence mechanisms in other systems, we demonstrate that this carbonyl-lock mechanism for trapping the excited state leads to the fluorescence yield increase observed experimentally, and set the stage for design principles to realize novel non-invasive biocompatible probes with applications in bioimaging, sensing, and biophotonics.https://doi.org/10.1038/s41467-023-42874-3
spellingShingle Gonzalo Díaz Mirón
Jonathan A. Semelak
Luca Grisanti
Alex Rodriguez
Irene Conti
Martina Stella
Jayaramakrishnan Velusamy
Nicola Seriani
Nadja Došlić
Ivan Rivalta
Marco Garavelli
Dario A. Estrin
Gabriele S. Kaminski Schierle
Mariano C. González Lebrero
Ali Hassanali
Uriel N. Morzan
The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter
Nature Communications
title The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter
title_full The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter
title_fullStr The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter
title_full_unstemmed The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter
title_short The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter
title_sort carbonyl lock mechanism underlying non aromatic fluorescence in biological matter
url https://doi.org/10.1038/s41467-023-42874-3
work_keys_str_mv AT gonzalodiazmiron thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT jonathanasemelak thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT lucagrisanti thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT alexrodriguez thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT ireneconti thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT martinastella thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT jayaramakrishnanvelusamy thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT nicolaseriani thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT nadjadoslic thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT ivanrivalta thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT marcogaravelli thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT darioaestrin thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT gabrieleskaminskischierle thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT marianocgonzalezlebrero thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT alihassanali thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT urielnmorzan thecarbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT gonzalodiazmiron carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT jonathanasemelak carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT lucagrisanti carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT alexrodriguez carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT ireneconti carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT martinastella carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT jayaramakrishnanvelusamy carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT nicolaseriani carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT nadjadoslic carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT ivanrivalta carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT marcogaravelli carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT darioaestrin carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT gabrieleskaminskischierle carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT marianocgonzalezlebrero carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT alihassanali carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter
AT urielnmorzan carbonyllockmechanismunderlyingnonaromaticfluorescenceinbiologicalmatter