Soft nanotechnology: the potential of polyelectrolyte multilayers against E. coli adhesion to surfaces

Preventing bacterial attachment to surfaces is the most efficient approach to controlling biofilm proliferation. The aim of this study was to compare anti-adhesion potentials of 5 and 50 mmol/L polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4–styrenesulfonate), poly(4-viny...

Full description

Bibliographic Details
Main Authors: Fink Rok, Oder Martina, Jukić Jasmina, Cindro Nikola, Požar Josip
Format: Article
Language:English
Published: Sciendo 2020-03-01
Series:Arhiv za Higijenu Rada i Toksikologiju
Subjects:
Online Access:https://doi.org/10.2478/aiht-2020-71-3319
Description
Summary:Preventing bacterial attachment to surfaces is the most efficient approach to controlling biofilm proliferation. The aim of this study was to compare anti-adhesion potentials of 5 and 50 mmol/L polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4–styrenesulfonate), poly(4-vinyl-N-ethylpyridinium bromide)/ poly(sodium 4–styrenesulfonate), and poly(4-vinyl-N-isobutylpyridinium bromide)/poly(sodium 4–styrenesulfonate) against Escherichia coli. Glass surface was covered with five polyelectrolyte layers and exposed to bacterial suspensions. Poly(4-vinyl-N-ethylpyridinium bromide)/poly(sodium 4–styrenesulfonate) was the most effective against bacterial adhesion, having reduced it by 60 %, followed by poly(4-vinyl-N-isobutylpyridinium bromide)/poly(sodium 4– styrenesulfonate) (47 %), and poly(allylamine hydrochloride)/poly(sodium 4–styrenesulfonate) (38 %). Polyelectrolyte multilayers with quaternary amine groups have a significant anti-adhesion potential and could find their place in coatings for food, pharmaceutical, and medical industry.
ISSN:1848-6312