An Infrared Local-Heat-Assisted Cold Stamping Process for Martensitic Steel and Application to an Auto Part

The automotive industry has tried to employ ultra-high-strength steel (UHSS), which has a higher strength with a thinner thickness. However, because of its low formability, there is a limit to the use of UHSS in industrial applications. Even though the hot-press-forming method can resolve the formab...

Full description

Bibliographic Details
Main Authors: Ki-Young Kim, Eun-Ho Lee, Soo-Hyun Park, Youn-Hee Kang, Jong-Youn Park, Hyoun-Young Lee, Chang Ho Moon, Kisoo Kim
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/10/11/1543
Description
Summary:The automotive industry has tried to employ ultra-high-strength steel (UHSS), which has a higher strength with a thinner thickness. However, because of its low formability, there is a limit to the use of UHSS in industrial applications. Even though the hot-press-forming method can resolve the formability problem, elevated-temperature conditions lead to side effects—heat transfer and productivity issues. This work presents the concept of an infrared local-heat-assisted cold stamping process. Before the forming process, local areas, where the formability problem occurs, are locally heated by the gathering of infrared rays and cooled to room temperature before delivery. Since the heat treatment is completed by the material supplier, the stamping companies can conduct cold stamping without new investments or the productivity issue. In this work, a heat-assisted cold V-bending test was conducted with a martensitic (MS) 1.5 GPa steel, the CR1470M steel provided by POSCO. The heating effects on the microstructure, hardness, and local ductility were also observed. Finally, a commercial door impact beam was successfully manufactured with the present method. In this application, only a targeted small area was heated. The results show that the present method can improve the formability and springback problems of MS steel in the stamping process.
ISSN:2075-4701