Dysregulated metabolism of the late herpes simplex virus 1 transcriptome through the vhs-VP22 axis uncouples virus cytopathic effect and virus production.

Herpes simplex virus 1 (HSV1) expresses its genes in a classical cascade culminating in the production of large amounts of structural proteins to facilitate virus assembly. HSV1 lacking the virus protein VP22 (Δ22) exhibits late translational shutoff, a phenotype that has been attributed to the unre...

Full description

Bibliographic Details
Main Authors: Kathleen Pheasant, Dana Perry, Emma L Wise, Vivian Cheng, Gillian Elliott
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2023-06-01
Series:PLoS Pathogens
Online Access:https://doi.org/10.1371/journal.ppat.1010966
Description
Summary:Herpes simplex virus 1 (HSV1) expresses its genes in a classical cascade culminating in the production of large amounts of structural proteins to facilitate virus assembly. HSV1 lacking the virus protein VP22 (Δ22) exhibits late translational shutoff, a phenotype that has been attributed to the unrestrained activity of the virion host shutoff (vhs) protein, a virus-encoded endoribonuclease which induces mRNA degradation during infection. We have previously shown that vhs is also involved in regulating the nuclear-cytoplasmic compartmentalisation of the virus transcriptome, and in the absence of VP22 a number of virus transcripts are sequestered in the nucleus late in infection. Here we show that despite expressing minimal amounts of structural proteins and failing to plaque on human fibroblasts, the strain 17 Δ22 virus replicates and spreads as efficiently as Wt virus, but without causing cytopathic effect (CPE). Nonetheless, CPE-causing virus spontaneously appeared on Δ22-infected human fibroblasts, and four viruses isolated in this way had all acquired point mutations in vhs which rescued late protein translation. However, unlike a virus deleted for vhs, these viruses still induced the degradation of both cellular and viral mRNA suggesting that vhs mutation in the absence of VP22 is necessary to overcome a more complex disturbance in mRNA metabolism than mRNA degradation alone. The ultimate outcome of secondary mutations in vhs is therefore the rescue of virus-induced CPE caused by late protein synthesis, and while there is a clear selective pressure on HSV1 to mutate vhs for optimal production of late structural proteins, the purpose of this is over and above that of virus production.
ISSN:1553-7366
1553-7374