Prediction of In-Hospital Cardiac Arrest Using Shallow and Deep Learning

Sudden cardiac arrest can leave serious brain damage or lead to death, so it is very important to predict before a cardiac arrest occurs. However, early warning score systems including the National Early Warning Score, are associated with low sensitivity and false positives. We applied shallow and d...

Full description

Bibliographic Details
Main Authors: Minsu Chae, Sangwook Han, Hyowook Gil, Namjun Cho, Hwamin Lee
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Diagnostics
Subjects:
Online Access:https://www.mdpi.com/2075-4418/11/7/1255
Description
Summary:Sudden cardiac arrest can leave serious brain damage or lead to death, so it is very important to predict before a cardiac arrest occurs. However, early warning score systems including the National Early Warning Score, are associated with low sensitivity and false positives. We applied shallow and deep learning to predict cardiac arrest to overcome these limitations. We evaluated the performance of the Synthetic Minority Oversampling Technique Ratio. We evaluated the performance using a Decision Tree, a Random Forest, Logistic Regression, Long Short-Term Memory model, Gated Recurrent Unit model, and LSTM–GRU hybrid models. Our proposed Logistic Regression demonstrated a higher positive predictive value and sensitivity than traditional early warning systems.
ISSN:2075-4418