Voltammetric sensor based on molecular imprinted polymer for lincomycin determination

For the selective detection of the antibiotic lincomycin, we developed a voltammetric sensor based on a glassy carbon electrode modified with reduced graphene oxide and polyarylenephthalide containing diphenylenethio and diphenyleneoxide fragments in the main chain of the polymer in the 1:1 ratio wi...

Full description

Bibliographic Details
Main Authors: Yulia A. Yarkaeva, Daria A. Dymova, Marat I. Nazyrov, Liana R. Zagitova, Valery N. Maistrenko
Format: Article
Language:English
Published: Uralʹskij federalʹnyj universitet imeni pervogo Prezidenta Rossii B.N. Elʹcina 2023-04-01
Series:Chimica Techno Acta
Subjects:
Online Access:https://journals.urfu.ru/index.php/chimtech/article/view/6748
Description
Summary:For the selective detection of the antibiotic lincomycin, we developed a voltammetric sensor based on a glassy carbon electrode modified with reduced graphene oxide and polyarylenephthalide containing diphenylenethio and diphenyleneoxide fragments in the main chain of the polymer in the 1:1 ratio with lincomycin molecular imprints obtained by phase inversion. Using FTIR spectroscopy, electrochemical impedance spectroscopy, cyclic and differential-pulse voltammetry, the electrochemical and analytical characteristics of the sensor were studied. The detection of lincomycin was carried out by differential pulse voltammetry. The linear concentration range was 2.5·10–7–5·10–4 M with a limit of detection of 6.8·10–8 M. It was shown that the presence of molecular imprints increases the sensitivity of the developed sensor in comparisons with a sensor with non-imprinted polymer by a factor of 3.05.
ISSN:2411-1414