The Underlying Order Induced by Orthogonality and the Quantum Speed Limit

We perform a comprehensive analysis of the set of parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>r</mi><mi>i</mi></msub><m...

Full description

Bibliographic Details
Main Authors: Francisco J. Sevilla, Andrea Valdés-Hernández, Alan J. Barrios
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Quantum Reports
Subjects:
Online Access:https://www.mdpi.com/2624-960X/3/3/24
_version_ 1797517414994280448
author Francisco J. Sevilla
Andrea Valdés-Hernández
Alan J. Barrios
author_facet Francisco J. Sevilla
Andrea Valdés-Hernández
Alan J. Barrios
author_sort Francisco J. Sevilla
collection DOAJ
description We perform a comprehensive analysis of the set of parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>r</mi><mi>i</mi></msub><mo>}</mo></mrow></semantics></math></inline-formula> that provide the energy distribution of pure qutrits that evolve towards a distinguishable state at a finite time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, when evolving under an arbitrary and time-independent Hamiltonian. The orthogonality condition is exactly solved, revealing a non-trivial interrelation between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> and the energy spectrum and allowing the classification of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>r</mi><mi>i</mi></msub><mo>}</mo></mrow></semantics></math></inline-formula> into families organized in a 2-simplex, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>δ</mi><mn>2</mn></msup></semantics></math></inline-formula>. Furthermore, the states determined by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>r</mi><mi>i</mi></msub><mo>}</mo></mrow></semantics></math></inline-formula> are likewise analyzed according to their quantum-speed limit. Namely, we construct a map that distinguishes those <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mi>i</mi></msub></semantics></math></inline-formula>s in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>δ</mi><mn>2</mn></msup></semantics></math></inline-formula> correspondent to states whose orthogonality time is limited by the Mandelstam–Tamm bound from those restricted by the Margolus–Levitin one. Our results offer a complete characterization of the physical quantities that become relevant in both the preparation and study of the dynamics of three-level states evolving towards orthogonality.
first_indexed 2024-03-10T07:16:18Z
format Article
id doaj.art-4bfe21e44c0f48ada8624c9a028e5da2
institution Directory Open Access Journal
issn 2624-960X
language English
last_indexed 2024-03-10T07:16:18Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Quantum Reports
spelling doaj.art-4bfe21e44c0f48ada8624c9a028e5da22023-11-22T15:01:51ZengMDPI AGQuantum Reports2624-960X2021-07-013337638810.3390/quantum3030024The Underlying Order Induced by Orthogonality and the Quantum Speed LimitFrancisco J. Sevilla0Andrea Valdés-Hernández1Alan J. Barrios2Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, Ciudad de México 01000, MexicoInstituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, Ciudad de México 01000, MexicoInstituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, Ciudad de México 01000, MexicoWe perform a comprehensive analysis of the set of parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>r</mi><mi>i</mi></msub><mo>}</mo></mrow></semantics></math></inline-formula> that provide the energy distribution of pure qutrits that evolve towards a distinguishable state at a finite time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, when evolving under an arbitrary and time-independent Hamiltonian. The orthogonality condition is exactly solved, revealing a non-trivial interrelation between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> and the energy spectrum and allowing the classification of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>r</mi><mi>i</mi></msub><mo>}</mo></mrow></semantics></math></inline-formula> into families organized in a 2-simplex, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>δ</mi><mn>2</mn></msup></semantics></math></inline-formula>. Furthermore, the states determined by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><msub><mi>r</mi><mi>i</mi></msub><mo>}</mo></mrow></semantics></math></inline-formula> are likewise analyzed according to their quantum-speed limit. Namely, we construct a map that distinguishes those <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mi>i</mi></msub></semantics></math></inline-formula>s in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>δ</mi><mn>2</mn></msup></semantics></math></inline-formula> correspondent to states whose orthogonality time is limited by the Mandelstam–Tamm bound from those restricted by the Margolus–Levitin one. Our results offer a complete characterization of the physical quantities that become relevant in both the preparation and study of the dynamics of three-level states evolving towards orthogonality.https://www.mdpi.com/2624-960X/3/3/24quantum speed limitorthogonality timethree-level systemsdynamics towards orthogonality
spellingShingle Francisco J. Sevilla
Andrea Valdés-Hernández
Alan J. Barrios
The Underlying Order Induced by Orthogonality and the Quantum Speed Limit
Quantum Reports
quantum speed limit
orthogonality time
three-level systems
dynamics towards orthogonality
title The Underlying Order Induced by Orthogonality and the Quantum Speed Limit
title_full The Underlying Order Induced by Orthogonality and the Quantum Speed Limit
title_fullStr The Underlying Order Induced by Orthogonality and the Quantum Speed Limit
title_full_unstemmed The Underlying Order Induced by Orthogonality and the Quantum Speed Limit
title_short The Underlying Order Induced by Orthogonality and the Quantum Speed Limit
title_sort underlying order induced by orthogonality and the quantum speed limit
topic quantum speed limit
orthogonality time
three-level systems
dynamics towards orthogonality
url https://www.mdpi.com/2624-960X/3/3/24
work_keys_str_mv AT franciscojsevilla theunderlyingorderinducedbyorthogonalityandthequantumspeedlimit
AT andreavaldeshernandez theunderlyingorderinducedbyorthogonalityandthequantumspeedlimit
AT alanjbarrios theunderlyingorderinducedbyorthogonalityandthequantumspeedlimit
AT franciscojsevilla underlyingorderinducedbyorthogonalityandthequantumspeedlimit
AT andreavaldeshernandez underlyingorderinducedbyorthogonalityandthequantumspeedlimit
AT alanjbarrios underlyingorderinducedbyorthogonalityandthequantumspeedlimit