Stratification of responses to tDCS intervention in a healthy pediatric population based on resting-state EEG profiles

Abstract Transcranial Direct Current Stimulation (tDCS) is a non-invasive neuromodulation technique with a wide variety of clinical and research applications. As increasingly acknowledged, its effectiveness is subject dependent, which may lead to time consuming and cost ineffective treatment develop...

Full description

Bibliographic Details
Main Authors: Paulina Clara Dagnino, Claire Braboszcz, Eleni Kroupi, Maike Splittgerber, Hannah Brauer, Astrid Dempfle, Carolin Breitling-Ziegler, Alexander Prehn-Kristensen, Kerstin Krauel, Michael Siniatchkin, Vera Moliadze, Aureli Soria-Frisch
Format: Article
Language:English
Published: Nature Portfolio 2023-05-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-34724-5
Description
Summary:Abstract Transcranial Direct Current Stimulation (tDCS) is a non-invasive neuromodulation technique with a wide variety of clinical and research applications. As increasingly acknowledged, its effectiveness is subject dependent, which may lead to time consuming and cost ineffective treatment development phases. We propose the combination of electroencephalography (EEG) and unsupervised learning for the stratification and prediction of individual responses to tDCS. A randomized, sham-controlled, double-blind crossover study design was conducted within a clinical trial for the development of pediatric treatments based on tDCS. The tDCS stimulation (sham and active) was applied either in the left dorsolateral prefrontal cortex or in the right inferior frontal gyrus. Following the stimulation session, participants performed 3 cognitive tasks to assess the response to the intervention: the Flanker Task, N-Back Task and Continuous Performance Test (CPT). We used data from 56 healthy children and adolescents to implement an unsupervised clustering approach that stratify participants based on their resting-state EEG spectral features before the tDCS intervention. We then applied a correlational analysis to characterize the clusters of EEG profiles in terms of participant’s difference in the behavioral outcome (accuracy and response time) of the cognitive tasks when performed after a tDCS-sham or a tDCS-active session. Better behavioral performance following the active tDCS session compared to the sham tDCS session is considered a positive intervention response, whilst the reverse is considered a negative one. Optimal results in terms of validity measures was obtained for 4 clusters. These results show that specific EEG-based digital phenotypes can be associated to particular responses. While one cluster presents neurotypical EEG activity, the remaining clusters present non-typical EEG characteristics, which seem to be associated with a positive response. Findings suggest that unsupervised machine learning can be successfully used to stratify and eventually predict responses of individuals to a tDCS treatment.
ISSN:2045-2322