Uncertainty of eddy covariance flux measurements over an urban area based on two towers

<p>The eddy covariance (EC) technique is the most direct method for measuring the exchange between the surface and the atmosphere in different ecosystems. Thus, it is commonly used to get information on air pollutant and greenhouse gas emissions, and on turbulent heat transfer. Typically an...

Full description

Bibliographic Details
Main Authors: L. Järvi, Ü. Rannik, T. V. Kokkonen, M. Kurppa, A. Karppinen, R. D. Kouznetsov, P. Rantala, T. Vesala, C. R. Wood
Format: Article
Language:English
Published: Copernicus Publications 2018-10-01
Series:Atmospheric Measurement Techniques
Online Access:https://www.atmos-meas-tech.net/11/5421/2018/amt-11-5421-2018.pdf
_version_ 1818500750985134080
author L. Järvi
L. Järvi
Ü. Rannik
T. V. Kokkonen
M. Kurppa
A. Karppinen
R. D. Kouznetsov
R. D. Kouznetsov
P. Rantala
T. Vesala
T. Vesala
C. R. Wood
author_facet L. Järvi
L. Järvi
Ü. Rannik
T. V. Kokkonen
M. Kurppa
A. Karppinen
R. D. Kouznetsov
R. D. Kouznetsov
P. Rantala
T. Vesala
T. Vesala
C. R. Wood
author_sort L. Järvi
collection DOAJ
description <p>The eddy covariance (EC) technique is the most direct method for measuring the exchange between the surface and the atmosphere in different ecosystems. Thus, it is commonly used to get information on air pollutant and greenhouse gas emissions, and on turbulent heat transfer. Typically an ecosystem is monitored by only one single EC measurement station at a time, making the ecosystem-level flux values subject to random and systematic uncertainties. Furthermore, in urban ecosystems we often have no choice but to conduct the single-point measurements in non-ideal locations such as close to buildings and/or in the roughness sublayer, bringing further complications to data analysis and flux estimations. In order to tackle the question of how representative a single EC measurement point in an urban area can be, two identical EC systems – measuring momentum, sensible and latent heat, and carbon dioxide fluxes – were installed on each side of the same building structure in central Helsinki, Finland, during July 2013–September 2015. The main interests were to understand the sensitivity of the vertical fluxes on the single measurement point and to estimate the systematic uncertainty in annual cumulative values due to missing data if certain, relatively wide, flow-distorted wind sectors are disregarded.</p><p>The momentum and measured scalar fluxes respond very differently to the distortion caused by the building structure. The momentum flux is the most sensitive to the measurement location, whereas scalar fluxes are less impacted. The flow distortion areas of the two EC systems (40–150 and 230–340°) are best detected from the mean-wind-normalised turbulent kinetic energy, and outside these areas the median relative random uncertainties of the studied fluxes measured by one system are between 12&thinsp;% and 28&thinsp;%. Different gap-filling methods with which to yield annual cumulative fluxes show how using data from a single EC measurement point can cause up to a 12&thinsp;% (480&thinsp;g&thinsp;C&thinsp;m<sup>−2</sup>) underestimation in the cumulative carbon fluxes as compared to combined data from the two systems. Combining the data from two EC systems also increases the fraction of usable half-hourly carbon fluxes from 45&thinsp;% to 69&thinsp;% at the annual level. For sensible and latent heat, the respective underestimations are up to 5&thinsp;% and 8&thinsp;% (0.094 and 0.069&thinsp;TJ&thinsp;m<sup>−2</sup>). The obtained random and systematic uncertainties are in the same range as observed in vegetated ecosystems. We also show how the commonly used data flagging criteria in natural ecosystems, kurtosis and skewness, are not necessarily suitable for filtering out data in a densely built urban environment. The results show how the single measurement system can be used to derive representative flux values for central Helsinki, but the addition of second system to other side of the building structure decreases the systematic uncertainties. Comparable results can be expected in similarly dense city locations where no large directional deviations in the source area are seen. In general, the obtained results will aid the scientific community by providing information about the sensitivity of EC measurements and their quality flagging in urban areas.</p>
first_indexed 2024-12-10T20:46:56Z
format Article
id doaj.art-4c013a0a710a47feae41b4bb37fa2d6c
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-12-10T20:46:56Z
publishDate 2018-10-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-4c013a0a710a47feae41b4bb37fa2d6c2022-12-22T01:34:11ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482018-10-01115421543810.5194/amt-11-5421-2018Uncertainty of eddy covariance flux measurements over an urban area based on two towersL. Järvi0L. Järvi1Ü. Rannik2T. V. Kokkonen3M. Kurppa4A. Karppinen5R. D. Kouznetsov6R. D. Kouznetsov7P. Rantala8T. Vesala9T. Vesala10C. R. Wood11Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, FinlandHelsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, FinlandInstitute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, FinlandInstitute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, FinlandInstitute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, FinlandFinnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, FinlandFinnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, FinlandA. M. Obukhov Institute of Atmospheric Physics, 119017 Moscow, RussiaInstitute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, FinlandInstitute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, FinlandINAR/Forest Sciences, Faculty of Agriculture and Forestry, P.O. Box 27, 00014 University of Helsinki, FinlandFinnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland<p>The eddy covariance (EC) technique is the most direct method for measuring the exchange between the surface and the atmosphere in different ecosystems. Thus, it is commonly used to get information on air pollutant and greenhouse gas emissions, and on turbulent heat transfer. Typically an ecosystem is monitored by only one single EC measurement station at a time, making the ecosystem-level flux values subject to random and systematic uncertainties. Furthermore, in urban ecosystems we often have no choice but to conduct the single-point measurements in non-ideal locations such as close to buildings and/or in the roughness sublayer, bringing further complications to data analysis and flux estimations. In order to tackle the question of how representative a single EC measurement point in an urban area can be, two identical EC systems – measuring momentum, sensible and latent heat, and carbon dioxide fluxes – were installed on each side of the same building structure in central Helsinki, Finland, during July 2013–September 2015. The main interests were to understand the sensitivity of the vertical fluxes on the single measurement point and to estimate the systematic uncertainty in annual cumulative values due to missing data if certain, relatively wide, flow-distorted wind sectors are disregarded.</p><p>The momentum and measured scalar fluxes respond very differently to the distortion caused by the building structure. The momentum flux is the most sensitive to the measurement location, whereas scalar fluxes are less impacted. The flow distortion areas of the two EC systems (40–150 and 230–340°) are best detected from the mean-wind-normalised turbulent kinetic energy, and outside these areas the median relative random uncertainties of the studied fluxes measured by one system are between 12&thinsp;% and 28&thinsp;%. Different gap-filling methods with which to yield annual cumulative fluxes show how using data from a single EC measurement point can cause up to a 12&thinsp;% (480&thinsp;g&thinsp;C&thinsp;m<sup>−2</sup>) underestimation in the cumulative carbon fluxes as compared to combined data from the two systems. Combining the data from two EC systems also increases the fraction of usable half-hourly carbon fluxes from 45&thinsp;% to 69&thinsp;% at the annual level. For sensible and latent heat, the respective underestimations are up to 5&thinsp;% and 8&thinsp;% (0.094 and 0.069&thinsp;TJ&thinsp;m<sup>−2</sup>). The obtained random and systematic uncertainties are in the same range as observed in vegetated ecosystems. We also show how the commonly used data flagging criteria in natural ecosystems, kurtosis and skewness, are not necessarily suitable for filtering out data in a densely built urban environment. The results show how the single measurement system can be used to derive representative flux values for central Helsinki, but the addition of second system to other side of the building structure decreases the systematic uncertainties. Comparable results can be expected in similarly dense city locations where no large directional deviations in the source area are seen. In general, the obtained results will aid the scientific community by providing information about the sensitivity of EC measurements and their quality flagging in urban areas.</p>https://www.atmos-meas-tech.net/11/5421/2018/amt-11-5421-2018.pdf
spellingShingle L. Järvi
L. Järvi
Ü. Rannik
T. V. Kokkonen
M. Kurppa
A. Karppinen
R. D. Kouznetsov
R. D. Kouznetsov
P. Rantala
T. Vesala
T. Vesala
C. R. Wood
Uncertainty of eddy covariance flux measurements over an urban area based on two towers
Atmospheric Measurement Techniques
title Uncertainty of eddy covariance flux measurements over an urban area based on two towers
title_full Uncertainty of eddy covariance flux measurements over an urban area based on two towers
title_fullStr Uncertainty of eddy covariance flux measurements over an urban area based on two towers
title_full_unstemmed Uncertainty of eddy covariance flux measurements over an urban area based on two towers
title_short Uncertainty of eddy covariance flux measurements over an urban area based on two towers
title_sort uncertainty of eddy covariance flux measurements over an urban area based on two towers
url https://www.atmos-meas-tech.net/11/5421/2018/amt-11-5421-2018.pdf
work_keys_str_mv AT ljarvi uncertaintyofeddycovariancefluxmeasurementsoveranurbanareabasedontwotowers
AT ljarvi uncertaintyofeddycovariancefluxmeasurementsoveranurbanareabasedontwotowers
AT urannik uncertaintyofeddycovariancefluxmeasurementsoveranurbanareabasedontwotowers
AT tvkokkonen uncertaintyofeddycovariancefluxmeasurementsoveranurbanareabasedontwotowers
AT mkurppa uncertaintyofeddycovariancefluxmeasurementsoveranurbanareabasedontwotowers
AT akarppinen uncertaintyofeddycovariancefluxmeasurementsoveranurbanareabasedontwotowers
AT rdkouznetsov uncertaintyofeddycovariancefluxmeasurementsoveranurbanareabasedontwotowers
AT rdkouznetsov uncertaintyofeddycovariancefluxmeasurementsoveranurbanareabasedontwotowers
AT prantala uncertaintyofeddycovariancefluxmeasurementsoveranurbanareabasedontwotowers
AT tvesala uncertaintyofeddycovariancefluxmeasurementsoveranurbanareabasedontwotowers
AT tvesala uncertaintyofeddycovariancefluxmeasurementsoveranurbanareabasedontwotowers
AT crwood uncertaintyofeddycovariancefluxmeasurementsoveranurbanareabasedontwotowers