Memristive and Synaptic Characteristics of Nitride-Based Heterostructures on Si Substrate
Brain-inspired artificial synaptic devices and neurons have the potential for application in future neuromorphic computing as they consume low energy. In this study, the memristive switching characteristics of a nitride-based device with two amorphous layers (SiN/BN) is investigated. We demonstrate...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-05-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/10/5/994 |
Summary: | Brain-inspired artificial synaptic devices and neurons have the potential for application in future neuromorphic computing as they consume low energy. In this study, the memristive switching characteristics of a nitride-based device with two amorphous layers (SiN/BN) is investigated. We demonstrate the coexistence of filamentary (abrupt) and interface (homogeneous) switching of Ni/SiN/BN/n<sup>++</sup>-Si devices. A better gradual conductance modulation is achieved for interface-type switching as compared with filamentary switching for an artificial synaptic device using appropriate voltage pulse stimulations. The improved classification accuracy for the interface switching (85.6%) is confirmed and compared to the accuracy of the filamentary switching mode (75.1%) by a three-layer neural network (784 × 128 × 10). Furthermore, the spike-timing-dependent plasticity characteristics of the synaptic device are also demonstrated. The results indicate the possibility of achieving an artificial synapse with a bilayer SiN/BN structure. |
---|---|
ISSN: | 2079-4991 |