Summary: | Abstract Understanding the distribution patterns of threatened species is central to conservation. The Amazonian distribution of the northern tiger cat (N-tiger cat, Leopardus tigrinus) and its interspecific relationship with the ocelot, its potential intraguild killer, are intriguing. Here, we combined presence/absence records with species distribution models (SDMs) to determine N-tiger cat occurrence in the Amazon. We also modeled ocelot density from 46 published estimates. The N-tiger cat’s presence in the Amazon was negatively influenced by ocelot density and net primary productivity and positively influenced by savannas and precipitation in the driest month. The best-fitting model predicted highly patchy N-tiger cat occurrence over an area of 236,238.67 km2, almost exclusively in savanna enclaves. Additionally, 312,348 camera trap-days at 49 sites in the Amazon revealed no N-tiger cats. The ocelot densities were significantly higher in areas with denser vegetation cover and warmer habitats, with predicted densities ≥ 0.6 ind/km2 throughout most of the biome. The lowest ocelot densities (≤ 0.06 ind/km2) were observed along the predicted range of N-tiger cats. Our findings highlight that the N-tiger cat’s presence in the Amazon is restricted to savannas and highly influenced by ocelot density, emphasizing the importance of including species interactions in SDMs.
|