A Review of Fabrication Technologies for Carbon Electrode-Based Micro-Supercapacitors

The very fast evolution in wearable electronics drives the need for energy storage micro-devices, which have to be flexible. Micro-supercapacitors are of high interest because of their high power density, long cycle lifetime and fast charge and discharge. Recent developments on micro-supercapacitors...

Full description

Bibliographic Details
Main Author: Veerle Vandeginste
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/2/862
Description
Summary:The very fast evolution in wearable electronics drives the need for energy storage micro-devices, which have to be flexible. Micro-supercapacitors are of high interest because of their high power density, long cycle lifetime and fast charge and discharge. Recent developments on micro-supercapacitors focus on improving the energy density, overall electrochemical performance, and mechanical properties. In this review, the different types of micro-supercapacitors and configurations are briefly introduced. Then, the advances in carbon electrode materials are presented, including activated carbon, carbon nanotubes, graphene, onion-like carbon, and carbide-derived carbon. The different types of electrolytes used in studies on micro-supercapacitors are also treated, including aqueous, organic, ionic liquid, solid-state, and quasi-solid-state electrolytes. Furthermore, the latest developments in fabrication techniques for micro-supercapacitors, such as different deposition, coating, etching, and printing technologies, are discussed in this review on carbon electrode-based micro-supercapacitors.
ISSN:2076-3417