Soft Semi <i>ω</i>-Open Sets

In this paper, we introduce the class of soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open sets of a soft topological space <...

Full description

Bibliographic Details
Main Author: Samer Al Ghour
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/24/3168
_version_ 1797502637959020544
author Samer Al Ghour
author_facet Samer Al Ghour
author_sort Samer Al Ghour
collection DOAJ
description In this paper, we introduce the class of soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open sets of a soft topological space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>τ</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula>, using soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open sets. We show that the class of soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open sets contains both the soft topology <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>τ</mi><mi>ω</mi></msub></semantics></math></inline-formula> and the class of soft semi-open sets. Additionally, we define soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed sets as the class of soft complements of soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open sets. We present here a study of the properties of soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open sets, especially in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>τ</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><msub><mi>τ</mi><mi>ω</mi></msub><mo>,</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula>. In particular, we prove that the class of soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open sets is closed under arbitrary soft union but not closed under finite soft intersections; we also study the correspondence between the soft topology of soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open sets of a soft topological space and their generated topological spaces and vice versa. In addition to these, we introduce the soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-interior and soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closure operators via soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open and soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed sets. We prove several equations regarding these two new soft operators. In particular, we prove that these operators can be calculated using other usual soft operators in both of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>τ</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><msub><mi>τ</mi><mi>ω</mi></msub><mo>,</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and some equations focus on soft anti-locally countable soft topological spaces.
first_indexed 2024-03-10T03:37:58Z
format Article
id doaj.art-4c35bc93a96b458192434d121b0dac15
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T03:37:58Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-4c35bc93a96b458192434d121b0dac152023-11-23T09:25:09ZengMDPI AGMathematics2227-73902021-12-01924316810.3390/math9243168Soft Semi <i>ω</i>-Open SetsSamer Al Ghour0Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, JordanIn this paper, we introduce the class of soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open sets of a soft topological space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>τ</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula>, using soft <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open sets. We show that the class of soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open sets contains both the soft topology <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>τ</mi><mi>ω</mi></msub></semantics></math></inline-formula> and the class of soft semi-open sets. Additionally, we define soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed sets as the class of soft complements of soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open sets. We present here a study of the properties of soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open sets, especially in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>τ</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><msub><mi>τ</mi><mi>ω</mi></msub><mo>,</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula>. In particular, we prove that the class of soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open sets is closed under arbitrary soft union but not closed under finite soft intersections; we also study the correspondence between the soft topology of soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open sets of a soft topological space and their generated topological spaces and vice versa. In addition to these, we introduce the soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-interior and soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closure operators via soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-open and soft semi <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>-closed sets. We prove several equations regarding these two new soft operators. In particular, we prove that these operators can be calculated using other usual soft operators in both of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>τ</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><msub><mi>τ</mi><mi>ω</mi></msub><mo>,</mo><mi>A</mi><mo>)</mo></mrow></semantics></math></inline-formula>, and some equations focus on soft anti-locally countable soft topological spaces.https://www.mdpi.com/2227-7390/9/24/3168soft ω-opensoft semi-opensoft semi interiorsoft semi interiorsoft generated soft topological spacesoft induced topological spaces
spellingShingle Samer Al Ghour
Soft Semi <i>ω</i>-Open Sets
Mathematics
soft ω-open
soft semi-open
soft semi interior
soft semi interior
soft generated soft topological space
soft induced topological spaces
title Soft Semi <i>ω</i>-Open Sets
title_full Soft Semi <i>ω</i>-Open Sets
title_fullStr Soft Semi <i>ω</i>-Open Sets
title_full_unstemmed Soft Semi <i>ω</i>-Open Sets
title_short Soft Semi <i>ω</i>-Open Sets
title_sort soft semi i ω i open sets
topic soft ω-open
soft semi-open
soft semi interior
soft semi interior
soft generated soft topological space
soft induced topological spaces
url https://www.mdpi.com/2227-7390/9/24/3168
work_keys_str_mv AT sameralghour softsemiiōiopensets