UV Lighting in Horticulture: A Sustainable Tool for Improving Production Quality and Food Safety

Ultraviolet (UV) is a component of solar radiation that can be divided into three types defined by waveband: UV-A (315–400 nm), UV-B (280–315 nm), and UV-C (<280 nm). UV light can influence the physiological responses of plants. Wavelength, intensity, and exposure have a great impact on plant gro...

Full description

Bibliographic Details
Main Authors: Danilo Loconsole, Pietro Santamaria
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Horticulturae
Subjects:
Online Access:https://www.mdpi.com/2311-7524/7/1/9
Description
Summary:Ultraviolet (UV) is a component of solar radiation that can be divided into three types defined by waveband: UV-A (315–400 nm), UV-B (280–315 nm), and UV-C (<280 nm). UV light can influence the physiological responses of plants. Wavelength, intensity, and exposure have a great impact on plant growth and quality. Interaction between plants and UV light is regulated by photoreceptors such as UV Resistance Locus 8 (UVR8) that enables acclimation to UV-B stress. Although UV in high doses is known to damage quality and production parameters, some studies show that UV in low doses may stimulate biomass accumulation and the synthesis of healthy compounds that mainly absorb UV. UV exposure is known to induce variations in plant architecture, important in ornamental crops, increasing their economic value. Abiotic stress induced by UV exposure increases resistance to insects and pathogens, and reduce postharvest quality depletion. This review highlights the role that UV may play in plant growth, quality, photomorphogenesis, and abiotic/biotic stress resistance.
ISSN:2311-7524